
133

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 11

Regular Expressions 11

This chapter describes regular expression pattern matching and string
processing based on regular expression substitutions. These features
provide the most powerful string processing facilities in Tcl. Tcl
commands described are: regexp and regsub.

This chapter is from Practical Programming in Tcl and Tk, 3rd Ed.
© 1999, Brent Welch
http://www.beedub.com/book/

Regular expressions are a formal way to
describe string patterns. They provide a powerful and compact way to specify
patterns in your data. Even better, there is a very efficient implementation of the
regular expression mechanism due to Henry Spencer. If your script does much
string processing, it is worth the effort to learn about the regexp command. Your
Tcl scripts will be compact and efficient. This chapter uses many examples to
show you the features of regular expressions.

Regular expression substitution is a mechanism that lets you rewrite a
string based on regular expression matching. The regsub command is another
powerful tool, and this chapter includes several examples that do a lot of work in
just a few Tcl commands. Stephen Uhler has shown me several ways to trans-
form input data into a Tcl script with regsub and then use subst or eval to pro-
cess the data. The idea takes a moment to get used to, but it provides a very
efficient way to process strings.

Tcl 8.1 added a new regular expression implementation that supports Uni-
code and advanced regular expressions (ARE). This implementation adds more
syntax and escapes that makes it easier to write patterns, once you learn the
new features! If you know Perl, then you are already familiar with these fea-
tures. The Tcl advanced regular expressions are almost identical to the Perl 5
regular expressions. The new features include a few very minor incompatibilities
with the regular expressions implemented in earlier versions of Tcl 8.0, but these
rarely occur in practice. The new regular expression package supports Unicode,
of course, so you can write patterns to match Japanese or Hindu documents!

134 Regular Expressions Chap. 11

When to Use Regular Expressions

Regular expressions can seem overly complex at first. They introduce their own
syntax and their own rules, and you may be tempted to use simpler commands
like string first, string range, or string match to process your strings. How-
ever, often a single regular expression command can replace a sequence of sev-
eral string commands. Any time you can replace several Tcl commands with
one, you get a performance improvement. Furthermore, the regular expression
matcher is implemented in optimized C code, so pattern matching is fast.

The regular expression matcher does more than test for a match. It also
tells you what part of your input string matches the pattern. This is useful for
picking data out of a large input string. In fact, you can capture several pieces of
data in just one match by using subexpressions. The regexp Tcl command makes
this easy by assigning the matching data to Tcl variables. If you find yourself
using string first and string range to pick out data, remember that regexp
can do it in one step instead.

The regular expression matcher is structured so that patterns are first com-
piled into an form that is efficient to match. If you use the same pattern fre-
quently, then the expensive compilation phase is done only once, and all your
matching uses the efficient form. These details are completely hidden by the Tcl
interface. If you use a pattern twice, Tcl will nearly always be able to retrieve the
compiled form of the pattern. As you can see, the regular expression matcher is
optimized for lots of heavy-duty string processing.

Avoiding a Common Problem

Group your patterns with curly braces.
One of the stumbling blocks with regular expressions is that they use some

of the same special characters as Tcl. Any pattern that contains brackets, dollar
signs, or spaces must be quoted when used in a Tcl command. In many cases you
can group the regular expression with curly braces, so Tcl pays no attention to it.
However, when using Tcl 8.0 (or earlier) you may need Tcl to do backslash substi-
tutions on part of the pattern, and then you need to worry about quoting the spe-
cial characters in the regular expression.

Advanced regular expressions eliminate this problem because backslash
substitution is now done by the regular expression engine. Previously, to get \n
to mean the newline character (or \t for tab) you had to let Tcl do the substitu-
tion. With Tcl 8.1, \n and \t inside a regular expression mean newline and tab.
In fact, there are now about 20 backslash escapes you can use in patterns. Now
more than ever, remember to group your patterns with curly braces to avoid con-
flicts between Tcl and the regular expression engine.

The patterns in the first sections of this Chapter ignore this problem. The
sample expressions in Table 11–7 on page 151 are quoted for use within Tcl
scripts. Most are quoted simply by putting the whole pattern in braces, but some
are shown without braces for comparison.

Regular Expression Syntax 135
II. A

d
va

nc
e

d
 Tc

l

Regular Expression Syntax

This section describes the basics of regular expression patterns, which are found
in all versions of Tcl. There are occasional references to features added by
advanced regular expressions, but they are covered in more detail starting on
page 138. There is enough syntax in regular expressions that there are five
tables that summarize all the options. These tables appear together starting at
page 145.

A regular expression is a sequence of the following items:

• A literal character.
• A matching character, character set, or character class.
• A repetition quantifier.
• An alternation clause.
• A subpattern grouped with parentheses.

Matching Characters

Most characters simply match themselves. The following pattern matches
an a followed by a b:

ab

The general wild-card character is the period, “.”. It matches any single
character. The following pattern matches an a followed by any character:

a.

Remember that matches can occur anywhere within a string; a pattern does
not have to match the whole string. You can change that by using anchors, which
are described on page 137.

Character Sets

The matching character can be restricted to a set of characters with the
[xyz] syntax. Any of the characters between the two brackets is allowed to
match. For example, the following matches either Hello or hello:

[Hh]ello

The matching set can be specified as a range over the character set with the
[x-y] syntax. The following matches any digit:

[0-9]

There is also the ability to specify the complement of a set. That is, the
matching character can be anything except what is in the set. This is achieved
with the [^xyz] syntax. Ranges and complements can be combined. The follow-
ing matches anything except the uppercase and lowercase letters:

[^a-zA-Z]

Using special characters in character sets.
If you want a] in your character set, put it immediately after the initial

136 Regular Expressions Chap. 11

opening bracket. You do not need to do anything special to include [in your char-
acter set. The following matches any square brackets or curly braces:

[][{}]

Most regular expression syntax characters are no longer special inside
character sets. This means you do not need to backslash anything inside a brack-
eted character set except for backslash itself. The following pattern matches sev-
eral of the syntax characters used in regular expressions:

[][+*?()|\\]

Advanced regular expressions add names and backslash escapes as short-
hand for common sets of characters like white space, alpha, alphanumeric, and
more. These are described on page 139 and listed in Table 11–3 on page 146.

Quantifiers

Repetition is specified with *, for zero or more, +, for one or more, and ?, for
zero or one. These quantifiers apply to the previous item, which is either a
matching character, a character set, or a subpattern grouped with parentheses.
The following matches a string that contains b followed by zero or more a’s:

ba*

You can group part of the pattern with parentheses and then apply a quan-
tifier to that part of the pattern. The following matches a string that has one or
more sequences of ab:

(ab)+

The pattern that matches anything, even the empty string, is:
.*

These quantifiers have a greedy matching behavior: They match as many
characters as possible. Advanced regular expressions add nongreedy matching,
which is described on page 140. For example, a pattern to match a single line
might look like this:

.*\n

However, as a greedy match, this will match all the lines in the input, end-
ing with the last newline in the input string. The following pattern matches up
through the first newline.

[^\n]*\n

We will shorten this pattern even further on page 140 by using nongreedy
quantifiers. There are also special newline sensitive modes you can turn on with
some options described on page 143.

Alternation

Alternation lets you test more than one pattern at the same time. The
matching engine is designed to be able to test multiple patterns in parallel, so
alternation is efficient. Alternation is specified with |, the pipe symbol. Another
way to match either Hello or hello is:

Regular Expression Syntax 137
II. A

d
va

nc
e

d
 Tc

l

hello|Hello

You can also write this pattern as:
(h|H)ello

or as:
[hH]ello

Anchoring a Match

By default a pattern does not have to match the whole string. There can be
unmatched characters before and after the match. You can anchor the match to
the beginning of the string by starting the pattern with ^, or to the end of the
string by ending the pattern with $. You can force the pattern to match the whole
string by using both. All strings that begin with spaces or tabs are matched with:

^[\t]+

If you have many text lines in your input, you may be tempted to think of ^
as meaning "beginning of line" instead of "beginning of string." By default, the ^
and $ anchors are relative to the whole input, and embedded newlines are
ignored. Advanced regular expressions support options that make the ^ and $
anchors line-oriented. They also add the \A and \Z anchors that always match
the beginning and end of the string, respectively.

Backslash Quoting

Use the backslash character to turn off these special characters :
. * ? + [] () ^ $ | \

For example, to match the plus character, you will need:
\+

Remember that this quoting is not necessary inside a bracketed expression
(i.e., a character set definition.) For example, to match either plus or question
mark, either of these patterns will work:

(\+|\?)

[+?]

To match a single backslash, you need two. You must do this everywhere,
even inside a bracketed expression. Or you can use \B, which was added as part
of advanced regular expressions. Both of these match a single backslash:

\\

\B

Unknown backslash sequences are an error.
Versions of Tcl before 8.1 ignored unknown backslash sequences in regular

expressions. For example, \= was just =, and \w was just w. Even \n was just n,
which was probably frustrating to many beginners trying to get a newline into
their pattern. Advanced regular expressions add backslash sequences for tab,
newline, character classes, and more. This is a convenient improvement, but in
rare cases it may change the semantics of a pattern. Usually these cases are

138 Regular Expressions Chap. 11

where an unneeded backslash suddenly takes on meaning, or causes an error
because it is unknown.

Matching Precedence

If a pattern can match several parts of a string, the matcher takes the
match that occurs earliest in the input string. Then, if there is more than one
match from that same point because of alternation in the pattern, the matcher
takes the longest possible match. The rule of thumb is: first, then longest. This
rule gets changed by nongreedy quantifiers that prefer a shorter match.

Watch out for *, which means zero or more, because zero of anything is
pretty easy to match. Suppose your pattern is:

[a-z]*

This pattern will match against 123abc, but not how you expect. Instead of
matching on the letters in the string, the pattern will match on the zero-length
substring at the very beginning of the input string! This behavior can be seen by
using the -indices option of the regexp command described on page 148. This
option tells you the location of the matching string instead of the value of the
matching string.

Capturing Subpatterns

Use parentheses to capture a subpattern. The string that matches the pat-
tern within parentheses is remembered in a matching variable, which is a Tcl
variable that gets assigned the string that matches the pattern. Using parenthe-
ses to capture subpatterns is very useful. Suppose we want to get everything
between the <td> and </td> tags in some HTML. You can use this pattern:

<td>([^<]*)</td>

The matching variable gets assigned the part of the input string that
matches the pattern inside the parentheses. You can capture many subpatterns
in one match, which makes it a very efficient way to pick apart your data. Match-
ing variables are explained in more detail on page 148 in the context of the
regexp command.

Sometimes you need to introduce parentheses but you do not care about the
match that occurs inside them. The pattern is slightly more efficient if the
matcher does not need to remember the match. Advanced regular expressions
add noncapturing parentheses with this syntax:

(?:pattern)

Advanced Regular Expressions

The syntax added by advanced regular expressions is mostly just shorthand
notation for constructs you can make with the basic syntax already described.
There are also some new features that add additional power: nongreedy quantifi-

Advanced Regular Expressions 139
II. A

d
va

nc
e

d
 Tc

l

ers, back references, look-ahead patterns, and named character classes. If you
are just starting out with regular expressions, you can ignore most of this sec-
tion, except for the one about backslash sequences. Once you master the basics,
of if you are already familiar with regular expressions in Tcl (or the UNIX vi edi-
tor or grep utility), then you may be interested in the new features of advanced
regular expressions.

Compatibility with Patterns in Tcl 8.0

Advanced regular expressions add syntax in an upward compatible way.
Old patterns continue to work with the new matcher, but advanced regular
expressions will raise errors if given to old versions of Tcl. For example, the ques-
tion mark is used in many of the new constructs, and it is artfully placed in loca-
tions that would not be legal in older versions of regular expressions. The added
syntax is summarized in Table 11–2 on page 145.

If you have unbraced patterns from older code, they are very likely to be
correct in Tcl 8.1 and later versions. For example, the following pattern picks out
everything up to the next newline. The pattern is unbraced, so Tcl substitutes
the newline character for each occurrence of \n. The square brackets are quoted
so that Tcl does not think they delimit a nested command:

regexp "(\[^\n\]+)\n" $input

The above command behaves identically when using advanced regular
expressions, although you can now also write it like this:

regexp {([^\n]+)\n} $input

The curly braces hide the brackets from the Tcl parser, so they do not need to be
escaped with backslash. This saves us two characters and looks a bit cleaner.

Backslash Escape Sequences

The most significant change in advanced regular expression syntax is back-
slash substitutions. In Tcl 8.0 and earlier, a backslash is only used to turn off
special characters such as: . + * ? []. Otherwise it was ignored. For example,
\n was simply n to the Tcl 8.0 regular expression engine. This was a source of
confusion, and it meant you could not always quote patterns in braces to hide
their special characters from Tcl’s parser. In advanced regular expressions, \n
now means the newline character to the regular expression engine, so you should
never need to let Tcl do backslash processing.

Again, always group your pattern with curly braces to avoid confusion.

Advanced regular expressions add a lot of new backslash sequences. They
are listed in Table 11–4 on page 146. Some of the more useful ones include \s,
which matches space-like characters, \w, which matches letters, digit, and the
underscore, \y, which matches the beginning or end of a word, and \B, which
matches a backslash.

140 Regular Expressions Chap. 11

Character Classes

Character classes are names for sets of characters. The named character
class syntax is valid only inside a bracketed character set. The syntax is

[:identifier:]

For example, alpha is the name for the set of uppercase and lowercase let-
ters. The following two patterns are almost the same:

[A-Za-z]

[[:alpha:]]

The difference is that the alpha character class also includes accented characters
like è. If you match data that contains nonASCII characters, the named charac-
ter classes are more general than trying to name the characters explicitly.

There are also backslash sequences that are shorthand for some of the
named character classes. The following patterns to match digits are equivalent:

[0-9]

[[:digit:]]

\d

The following patterns match space-like characters including backspace,
form feed, newline, carriage return, tag, and vertical tab:

[\b\f\n\r\t\v]

[:space:]

\s

The named character classes and the associated backslash sequence are
listed in Table 11–3 on page 146.

You can use character classes in combination with other characters or char-
acter classes inside a character set definition. The following patterns match let-
ters, digits, and underscore:

[[:digit:][:alpha:]_]

[\d[:alpha:]_]

[[:alnum:]_]

\w

Note that \d, \s and \w can be used either inside or outside character sets.
When used outside a bracketed expression, they form their own character set.
There are also \D, \S, and \W, which are the complement of \d, \s, and \w.
These escapes (i.e., \D for not-a-digit) cannot be used inside a bracketed charac-
ter set.

There are two special character classes, [[:<:] and [[:>:]], that match
the beginning and end of a word, respectively. A word is defined as one or more
characters that match \w.

Nongreedy Quantifiers

The *, +, and ? characters are quantifiers that specify repetition. By default
these match as many characters as possible, which is called greedy matching. A
nongreedy match will match as few characters as possible. You can specify non-

Advanced Regular Expressions 141
II. A

d
va

nc
e

d
 Tc

l

greedy matching by putting a question mark after these quantifiers. Consider
the pattern to match "one or more of not-a-newline followed by a newline." The
not-a-newline must be explicit with the greedy quantifier, as in:

[^\n]+\n

Otherwise, if the pattern were just
.+\n

then the "." could well match newlines, so the pattern would greedily consume
everything until the very last newline in the input. A nongreedy match would be
satisfied with the very first newline instead:

.+?\n

By using the nongreedy quantifier we’ve cut the pattern from eight charac-
ters to five. Another example that is shorter with a nongreedy quantifier is the
HTML example from page 138. The following pattern also matches everything
between <td> and </td>:

<td>(.*?)</td>

Even ? can be made nongreedy, ??, which means it prefers to match zero
instead of one. This only makes sense inside the context of a larger pattern. Send
me e-mail if you have a compelling example for it!

Bound Quantifiers

The {m,n} syntax is a quantifier that means match at least m and at most n
of the previous matching item. There are two variations on this syntax. A simple
{m} means match exactly m of the previous matching item. A {m,} means match m
or more of the previous matching item. All of these can be made nongreedy by
adding a ? after them.

Back References

A back reference is a feature you cannot easily get with basic regular
expressions. A back reference matches the value of a subpattern captured with
parentheses. If you have several sets of parentheses you can refer back to differ-
ent captured expressions with \1, \2, and so on. You count by left parentheses to
determine the reference.

For example, suppose you want to match a quoted string, where you can use
either single or double quotes. You need to use an alternation of two patterns to
match strings that are enclosed in double quotes or in single quotes:

("[^"]*"|’[^’]*’)

With a back reference, \1, the pattern becomes simpler:
(’|").*?\1

The first set of parenthesis matches the leading quote, and then the \1
refers back to that particular quote character. The nongreedy quantifier ensures
that the pattern matches up to the first occurrence of the matching quote.

142 Regular Expressions Chap. 11

Look-ahead

Look-ahead patterns are subexpressions that are matched but do not con-
sume any of the input. They act like constraints on the rest of the pattern, and
they typically occur at the end of your pattern. A positive look-ahead causes the
pattern to match if it also matches. A negative look-ahead causes the pattern to
match if it would not match. These constraints make more sense in the context of
matching variables and in regular expression substitutions done with the regsub
command. For example, the following pattern matches a filename that begins
with A and ends with .txt

^A.*\.txt$

The next version of the pattern adds parentheses to group the file name
suffix.

^A.*(\.txt)$

The parentheses are not strictly necessary, but they are introduced so that
we can compare the pattern to one that uses look-ahead. A version of the pattern
that uses look-ahead looks like this:

^A.*(?=\.txt)$

The pattern with the look-ahead constraint matches only the part of the
filename before the .txt, but only if the .txt is present. In other words, the .txt
is not consumed by the match. This is visible in the value of the matching vari-
ables used with the regexp command. It would also affect the substitutions done
in the regsub command.

There is negative look-ahead too. The following pattern matches a filename
that begins with A and does not end with .txt.

^A.*(?!\.txt)$

Writing this pattern without negative look-ahead is awkward.

Character Codes

The \nn and \mmm syntax, where n and m are digits, can also mean an 8-bit
character code corresponding to the octal value nn or mmm. This has priority over a
back reference. However, I just wouldn’t use this notation for character codes.
Instead, use the Unicode escape sequence, \unnnn, which specifies a 16-bit value.
The \xnn sequence also specifies an 8-bit character code. Unfortunately, the \x
escape consumes all hex digits after it (not just two!) and then truncates the
hexadecimal value down to 8 bits. This misfeature of \x is not considered a bug
and will probably not change even in future versions of Tcl.

The \Uyyyyyyyy syntax is reserved for 32-bit Unicode, but I don’t expect to
see that implemented anytime soon.

Collating Elements

Collating elements are characters or long names for characters that you can
use inside character sets. Currently, Tcl only has some long names for various

Advanced Regular Expressions 143
II. A

d
va

nc
e

d
 Tc

l

ASCII punctuation characters. Potentially, it could support names for every Uni-
code character, but it doesn’t because the mapping tables would be huge. This
section will briefly mention the syntax so that you can understand it if you see it.
But its usefulness is still limited.

Within a bracketed expression, the following syntax is used to specify a col-
lating element:

[.identifier.]

The identifier can be a character or a long name. The supported long names
can be found in the generic/regc_locale.c file in the Tcl source code distribu-
tion. A few examples are shown below:

[.c.]

[.#.]

[.number-sign.]

Equivalence Classes

An equivalence class is all characters that sort to the same position. This is
another feature that has limited usefulness in the current version of Tcl. In Tcl,
characters sort by their Unicode character value, so there are no equivalence
classes that contain more than one character! However, you could imagine a
character class for ’o’, ’ò’, and other accented versions of the letter o. The syntax
for equivalence classes within bracketed expressions is:

[=char=]

where char is any one of the characters in the character class. This syntax is
valid only inside a character class definition.

Newline Sensitive Matching

By default, the newline character is just an ordinary character to the
matching engine. You can make the newline character special with two options:
lineanchor and linestop. You can set these options with flags to the regexp and
regsub Tcl commands, or you can use the embedded options described later in
Table 11–5 on page 147.

The lineanchor option makes the ^ and $ anchors work relative to new-
lines. The ^ matches immediately after a newline, and $ matches immediately
before a newline. These anchors continue to match the very beginning and end of
the input, too. With or without the lineanchor option, you can use \A and \Z to
match the beginning and end of the string.

The linestop option prevents . (i.e., period) and character sets that begin
with ^ from matching a newline character. In other words, unless you explicitly
include \n in your pattern, it will not match across newlines.

144 Regular Expressions Chap. 11

Embedded Options

You can start a pattern with embedded options to turn on or off case sensi-
tivity, newline sensitivity, and expanded syntax, which is explained in the next
section. You can also switch from advanced regular expressions to a literal string,
or to older forms of regular expressions. The syntax is a leading:

(?chars)

where chars is any number of option characters. The option characters are listed
in Table 11–5 on page 147.

Expanded Syntax

Expanded syntax lets you include comments and extra white space in your
patterns. This can greatly improve the readability of complex patterns.
Expanded syntax is turned on with a regexp command option or an embedded
option.

Comments start with a # and run until the end of line. Extra white space
and comments can occur anywhere except inside bracketed expressions (i.e.,
character sets) or within multicharacter syntax elements like (?=. When you are
in expanded mode, you can turn off the comment character or include an explicit
space by preceding them with a backslash. Example 11–1 shows a pattern to
match URLs. The leading (?x) turns on expanded syntax. The whole pattern is
grouped in curly braces to hide it from Tcl. This example is considered again in
more detail in Example 11–3 on page 150:

Example 11–1 Expanded regular expressions allow comments.

regexp {(?x) # A pattern to match URLS
([^:]+): # The protocol before the initial colon
//([^:/]+) # The server name
(:([0-9]+))? # The optional port number
(/.*) # The trailing pathname

} $input

Syntax Summary 145
II. A

d
va

nc
e

d
 Tc

l

Syntax Summary

Table 11–1 summarizes the syntax of regular expressions available in all ver-
sions of Tcl:

Advanced regular expressions, which were introduced in Tcl 8.1, add more
syntax that is summarized in Table 11–2:

Table 11–1 Basic regular expression syntax.

. Matches any character.

* Matches zero or more instances of the previous pattern item.

+ Matches one or more instances of the previous pattern item.

? Matches zero or one instances of the previous pattern item.

() Groups a subpattern. The repetition and alternation operators apply to the preceding
subpattern.

| Alternation.

[] Delimit a set of characters. Ranges are specified as [x-y]. If the first character in the
set is ^, then there is a match if the remaining characters in the set are not present.

^ Anchor the pattern to the beginning of the string. Only when first.

$ Anchor the pattern to the end of the string. Only when last.

Table 11–2 Additional advanced regular expression syntax.

{m} Matches m instances of the previous pattern item.

{m}? Matches m instances of the previous pattern item. Nongreedy.

{m,} Matches m or more instances of the previous pattern item.

{m,}? Matches m or more instances of the previous pattern item. Nongreedy.

{m,n} Matches m through n instances of the previous pattern item.

{m,n}? Matches m through n instances of the previous pattern item. Nongreedy.

*? Matches zero or more instances of the previous pattern item. Nongreedy.

+? Matches one or more instances of the previous pattern item. Nongreedy.

?? Matches zero or one instances of the previous pattern item. Nongreedy.

(?:re) Groups a subpattern, re, but does not capture the result.

(?=re) Positive look-ahead. Matches the point where re begins.

(?!re) Negative look-ahead. Matches the point where re does not begin.

(?abc) Embedded options, where abc is any number of option letters listed in Table 11–5.

146 Regular Expressions Chap. 11

Table 11–3 lists the named character classes defined in advanced regular
expressions and their associated backslash sequences, if any. Character class
names are valid inside bracketed character sets with the [:class:] syntax.

Table 11–4 lists backslash sequences supported in Tcl 8.1.

\c One of many backslash escapes listed in Table 11–4.

[: :] Delimits a character class within a bracketed expression. See Table 11–3.

[. .] Delimits a collating element within a bracketed expression.

[= =] Delimits an equivalence class within a bracketed expression.

Table 11–3 Character classes.

alnum Upper and lower case letters and digits.

alpha Upper and lower case letters.

blank Space and tab.

cntrl Control characters: \u0001 through \u001F.

digit The digits zero through nine. Also \d.

graph Printing characters that are not in cntrl or space.

lower Lowercase letters.

print The same as alnum.

punct Punctuation characters.

space Space, newline, carriage return, tab, vertical tab, form feed. Also \s.

upper Uppercase letters.

xdigit Hexadecimal digits: zero through nine, a-f, A-F.

Table 11–4 Backslash escapes in regular expressions.

\a Alert, or "bell", character.

\A Matches only at the beginning of the string.

\b Backspace character, \u0008.

\B Synonym for backslash.

\cX Control-X.

\d Digits. Same as [[:digit:]]

\D Not a digit. Same as [^[:digit:]]

Table 11–2 Additional advanced regular expression syntax. (Continued)

Syntax Summary 147
II. A

d
va

nc
e

d
 Tc

l

Table 11–5 lists the embedded option characters used with the (?abc) syn-
tax.

\e Escape character, \u001B.

\f Form feed, \u000C.

\m Matches the beginning of a word.

\M Matches the end of a word.

\n Newline, \u000A.

\r Carriage return, \u000D.

\s Space. Same as [[:space:]]

\S Not a space. Same as [^[:space:]]

\t Horizontal tab, \u0009.

\uXXXX A 16-bit Unicode character code.

\v Vertical tab, \u000B.

\w Letters, digit, and underscore. Same as [[:alnum:]_]

\W Not a letter, digit, or underscore. Same as [^[:alnum:]_]

\xhh An 8-bit hexadecimal character code. Consumes all hex digits after \x.

\y Matches the beginning or end of a word.

\Y Matches a point that is not the beginning or end of a word.

\Z Matches the end of the string.

\0 NULL, \u0000

\x Where x is a digit, this is a back-reference.

\xy Where x and y are digits, either a decimal back-reference, or an 8-bit octal character
code.

\xyz Where x, y and z are digits, either a decimal back-reference or an 8-bit octal charac-
ter code.

Table 11–5 Embedded option characters used with the (?x) syntax.

b The rest of the pattern is a basic regular expression (a la vi or grep).

c Case sensitive matching. This is the default.

e The rest of the pattern is an extended regular expression (a la Tcl 8.0).

i Case insensitive matching.

m Synonym for the n option.

Table 11–4 Backslash escapes in regular expressions. (Continued)

148 Regular Expressions Chap. 11

The regexp Command

The regexp command provides direct access to the regular expression matcher.
Not only does it tell you whether a string matches a pattern, it can also extract
one or more matching substrings. The return value is 1 if some part of the string
matches the pattern; it is 0 otherwise. Its syntax is:

regexp ?flags? pattern string ?match sub1 sub2...?

The flags are described in Table 11–6:

The pattern argument is a regular expression as described earlier. If
string matches pattern, then the results of the match are stored in the vari-
ables named in the command. These match variable arguments are optional. If
present, match is set to be the part of the string that matched the pattern. The

n Newline sensitive matching . Both lineanchor and linestop mode.

p Partial newline sensitive matching. Only linestop mode.

q The rest of the pattern is a literal string.

s No newline sensitivity. This is the default.

t Tight syntax; no embedded comments. This is the default.

w Inverse partial newline-sensitive matching. Only lineanchor mode.

x Expanded syntax with embedded white space and comments.

Table 11–6 Options to the regexp command.

-nocase Lowercase characters in pattern can match either lowercase or uppercase
letters in string.

-indices The match variables each contain a pair of numbers that are in indices delimit-
ing the match within string. Otherwise, the matching string itself is copied
into the match variables.

-expanded The pattern uses the expanded syntax discussed on page 144.

-line The same as specifying both -lineanchor and -linestop.

-lineanchor Change the behavior of ̂ and $ so they are line-oriented as discussed on page
143.

-linestop Change matching so that . and character classes do not match newlines as
discussed on page 143.

-about Useful for debugging. It returns information about the pattern instead of try-
ing to match it against the input.

-- Signals the end of the options. You must use this if your pattern begins with -.

Table 11–5 Embedded option characters used with the (?x) syntax. (Continued)

The regexp Command 149
II. A

d
va

nc
e

d
 Tc

l

remaining variables are set to be the substrings of string that matched the cor-
responding subpatterns in pattern. The correspondence is based on the order of
left parentheses in the pattern to avoid ambiguities that can arise from nested
subpatterns.

Example 11–2 uses regexp to pick the hostname out of the DISPLAY envi-
ronment variable, which has the form:

hostname:display.screen

Example 11–2 Using regular expressions to parse a string.

set env(DISPLAY) sage:0.1
regexp {([^:]*):} $env(DISPLAY) match host
=> 1
set match
=> sage:
set host
=> sage

The pattern involves a complementary set, [^:], to match anything except
a colon. It uses repetition, *, to repeat that zero or more times. It groups that
part into a subexpression with parentheses. The literal colon ensures that the
DISPLAY value matches the format we expect. The part of the string that matches
the complete pattern is stored into the match variable. The part that matches the
subpattern is stored into host. The whole pattern has been grouped with braces
to quote the square brackets. Without braces it would be:

regexp (\[^:\]*): $env(DISPLAY) match host

With advanced regular expressions the nongreedy quantifier *? can replace
the complementary set:

regexp (.*?): $env(DISPLAY) match host

This is quite a powerful statement, and it is efficient. If we had only had the
string command to work with, we would have needed to resort to the following,
which takes roughly twice as long to interpret:

set i [string first : $env(DISPLAY)]

if {$i >= 0} {

set host [string range $env(DISPLAY) 0 [expr $i-1]]

}

A Pattern to Match URLs

Example 11–3 demonstrates a pattern with several subpatterns that
extract the different parts of a URL. There are lots of subpatterns, and you can
determine which match variable is associated with which subpattern by counting
the left parenthesis. The pattern will be discussed in more detail after the exam-
ple:

150 Regular Expressions Chap. 11

Example 11–3 A pattern to match URLs.

set url http://www.beedub.com:80/index.html
regexp {([^:]+)://([^:/]+)(:([0-9]+))?(/.*)} $url \

match protocol x serverport path
=> 1
set match
=> http://www.beedub.com:80/index.html
set protocol
=> http
set server
=> www.beedub.com
set x
=> :80
set port
=> 80
set path
=> /index.html

Let’s look at the pattern one piece at a time. The first part looks for the pro-
tocol, which is separated by a colon from the rest of the URL. The first part of the
pattern is one or more characters that are not a colon, followed by a colon. This
matches the http: part of the URL:

[^:]+:

Using nongreedy +? quantifier, you could also write that as:
.+?:

The next part of the pattern looks for the server name, which comes after
two slashes. The server name is followed either by a colon and a port number, or
by a slash. The pattern uses a complementary set that specifies one or more
characters that are not a colon or a slash. This matches the //www.beedub.com
part of the URL:

//[^:/]+

The port number is optional, so a subpattern is delimited with parentheses
and followed by a question mark. An additional set of parentheses are added to
capture the port number without the leading colon. This matches the :80 part of
the URL:

(:([0-9]+))?

The last part of the pattern is everything else, starting with a slash. This
matches the /index.html part of the URL:

/.*

Use subpatterns to parse strings.
To make this pattern really useful, we delimit several subpatterns with

parentheses:
([^:]+)://([^:/]+)(:([0-9]+))?(/.*)

These parentheses do not change the way the pattern matches. Only the
optional port number really needs the parentheses in this example. However, the
regexp command gives us access to the strings that match these subpatterns. In

The regexp Command 151
II. A

d
va

nc
e

d
 Tc

l

one step regexp can test for a valid URL and divide it into the protocol part, the
server, the port, and the trailing path.

The parentheses around the port number include the : before the digits.
We’ve used a dummy variable that gets the : and the port number, and another
match variable that just gets the port number. By using noncapturing parenthe-
ses in advanced regular expressions, we can eliminate the unused match vari-
able. We can also replace both complementary character sets with a nongreedy
.+? match. Example 11–4 shows this variation:

Example 11–4 An advanced regular expression to match URLs.

set url http://www.beedub.com:80/book/
regexp {(.+?)://(.+?)(?::([0-9]+))?(/.*)} $url \

match protocol server port path
=> 1
set match
=> http://www.beedub.com:80/book/
set protocol
=> http
set server
=> www.beedub.com
set port
=> 80
set path
=> /book/

Sample Regular Expressions

The table in this section lists regular expressions as you would use them in
Tcl commands. Most are quoted with curly braces to turn off the special meaning
of square brackets and dollar signs. Other patterns are grouped with double
quotes and use backslash quoting because the patterns include backslash
sequences like \n and \t. In Tcl 8.0 and earlier, these must be substituted by Tcl
before the regexp command is called. In these cases, the equivalent advanced
regular expression is also shown.

Table 11–7 Sample regular expressions.

{^[yY]} Begins with y or Y, as in a Yes answer.

{^(yes|YES|Yes)$} Exactly "yes", "Yes", or "YES".

"^\[^ \t:\]+:" Begins with colon-delimited field that has no spaces or
tabs.

{^\S+:} Same as above, using \S for "not space".

"^\[\t]*$" A string of all spaces or tabs.

{(?n)^\s*$} A blank line using newline sensitive mode.

152 Regular Expressions Chap. 11

The regsub Command

The regsub command does string substitution based on pattern matching. It is
very useful for processing your data. It can perform simple tasks like replacing
sequences of spaces and tabs with a single space. It can perform complex data
transforms, too, as described in the next section. Its syntax is:

regsub ?switches? pattern string subspec varname

The regsub command returns the number of matches and replacements, or
0 if there was no match. regsub copies string to varname, replacing occurrences
of pattern with the substitution specified by subspec. If the pattern does not
match, then string is copied to varname without modification. The optional
switches include:

• -all, which means to replace all occurrences of the pattern. Otherwise, only
the first occurrence is replaced.

• The -nocase, -expanded, -line, -linestop, and -lineanchor switches are
the same as in the regexp command. They are described on page 148.

• The -- switch separates the pattern from the switches, which is necessary if
your pattern begins with a -.

"(\n|^)\[^\n\]*(\n|$)" A blank line, the hard way.

{^[A-Za-z]+$} Only letters.

{^[[:alpha:]]+$} Only letters, the Unicode way.

{[A-Za-z0-9_]+} Letters, digits, and the underscore.

{\w+} Letters, digits, and the underscore using \w.

{[][${}\\]} The set of Tcl special characters:] [$ { } \

"\[^\n\]*\n" Everything up to a newline.

{.*?\n} Everything up to a newline using nongreedy *?

{\.} A period.

{[][$^?+*()|\\]} The set of regular expression special characters:
] [$ ^ ? + * () | \

<H1>(.*?)</H1> An H1 HTML tag. The subpattern matches the string
between the tags.

<!--.*?--> HTML comments.

{[0-9a-hA-H][0-9a-hA-H]} 2 hex digits.

{[[:xdigit:]]{2}} 2 hex digits, using advanced regular expressions.

{\d{1,3}} 1 to 3 digits, using advanced regular expressions.

Table 11–7 Sample regular expressions. (Continued)

Transforming Data to Program with regsub 153
II. A

d
va

nc
e

d
 Tc

l

The replacement pattern, subspec, can contain literal characters as well as
the following special sequences:

• & is replaced with the string that matched the pattern.
• \x , where x is a number, is replaced with the string that matched the corre-

sponding subpattern in pattern. The correspondence is based on the order
of left parentheses in the pattern specification.

The following replaces a user’s home directory with a ~:
regsub ^$env(HOME)/ $pathname ~/ newpath

The following constructs a C compile command line given a filename:
set file tclIO.c

regsub {([^\.]*)\.c$} $file {cc -c & -o \1.o} ccCmd

The matching pattern captures everything before the trailing .c in the file
name. The & is replaced with the complete match, tclIO.c, and \1 is replaced
with tclIO, which matches the pattern between the parentheses. The value
assigned to ccCmd is:

cc -c tclIO.c -o tclIO.o

We could execute that with:
eval exec $ccCmd

The following replaces sequences of multiple space characters with a single
space:

regsub -all {\s+} $string " " string

It is perfectly safe to specify the same variable as the input value and the
result. Even if there is no match on the pattern, the input string is copied into
the output variable.

The regsub command can count things for us. The following command
counts the newlines in some text. In this case the substitution is not important:

set numLines [regsub -all \n $text {} ignore]

Transforming Data to Program with regsub

One of the most powerful combinations of Tcl commands is regsub and subst.
This section describes a few examples that use regsub to transform data into Tcl
commands, and then use subst to replace those commands with a new version of
the data. This technique is very efficient because it relies on two subsystems that
are written in highly optimized C code: the regular expression engine and the Tcl
parser. These examples are primarily written by Stephen Uhler.

URL Decoding

When a URL is transmitted over the network, it is encoded by replacing
special characters with a %xx sequence, where xx is the hexadecimal code for the
character. In addition, spaces are replaced with a plus (+). It would be tedious

154 Regular Expressions Chap. 11

and very inefficient to scan a URL one character at a time with Tcl statements to
undo this encoding. It would be more efficient to do this with a custom C pro-
gram, but still very tedious. Instead, a combination of regsub and subst can effi-
ciently decode the URL in just a few Tcl commands.

Replacing the + with spaces requires quoting the + because it is the one-or-
more special character in regular expressions:

regsub -all {\+} $url { } url

The %xx are replaced with a format command that will generate the right
character:

regsub -all {%([0-9a-hA-H][0-9a-hA-H])} $url \

{[format %c 0x\1]} url

The %c directive to format tells it to generate the character from a charac-
ter code number. We force a hexadecimal interpretation with a leading 0x.
Advanced regular expressions let us write the "2 hex digits" pattern a bit more
cleanly:

regsub -all {%([[:xdigit:]]{2})} $url \

{[format %c 0x\1]} url

The resulting string is passed to subst to get the format commands substi-
tuted:

set url [subst $url]

For example, if the input is %7ewelch, the result of the regsub is:
[format %c 0x7e]welch

And then subst generates:
~welch

Example 11–5 encapsulates this trick in the Url_Decode procedure.

Example 11–5 The Url_Decode procedure.

proc Url_Decode {url} {
regsub -all {\+} $url { } url
regsub -all {%([:xdigit:]]{2})} $url \

{[format %c 0x\1]} url
return [subst $url]

}

CGI Argument Parsing

Example 11–6 builds upon Url_Decode to decode the inputs to a CGI pro-
gram that processes data from an HTML form. Each form element is identified
by a name, and the value is URL encoded. All the names and encoded values are
passed to the CGI program in the following format:

name1=value1&name2=value2&name3=value3

Example 11–6 shows Cgi_List and Cgi_Query. Cgi_Query receives the form
data from the standard input or the QUERY_STRING environment variable,

Transforming Data to Program with regsub 155
II. A

d
va

nc
e

d
 Tc

l

depending on whether the form data is transmitted with a POST or GET request.
These HTTP operations are described in detail in Chapter 17. Cgi_List uses
split to get back a list of names and values, and then it decodes them with
Url_Decode. It returns a Tcl-friendly name, value list that you can either iterate
through with a foreach command, or assign to an array with array set:

Example 11–6 The Cgi_Parse and Cgi_Value procedures.

proc Cgi_List {} {
set query [Cgi_Query]
regsub -all {\+} $query { } query
set result {}
foreach {x} [split $query &=] {

lappend result [Url_Decode $x]
}
return $result

}
proc Cgi_Query {} {

global env
if {![info exists env(QUERY_STRING)] ||

[string length $env(QUERY_STRING)] == 0} {
if {[info exists env(CONTENT_LENGTH)] &&

[string length $env(CONTENT_LENGTH)] != 0} {
set query [read stdin $env(CONTENT_LENGTH)]

} else {
gets stdin query

}
set env(QUERY_STRING) $query
set env(CONTENT_LENGTH) 0

}
return $env(QUERY_STRING)

}

An HTML form can have several form elements with the same name, and
this can result in more than one value for each name. If you blindly use array
set to map the results of Cgi_List into an array, you will lose the repeated val-
ues. Example 11–7 shows Cgi_Parse and Cgi_Value that store the query data in
a global cgi array. Cgi_Parse adds list structure whenever it finds a repeated
form value. The global cgilist array keeps a record of how many times a form
value is repeated. The Cgi_Value procedure returns elements of the global cgi
array, or the empty string if the requested value is not present.

Example 11–7 Cgi_Parse and Cgi_Value store query data in the cgi array.

proc Cgi_Parse {} {
global cgi cgilist
catch {unset cgi cgilist}
set query [Cgi_Query]
regsub -all {\+} $query { } query
foreach {name value} [split $query &=] {

set name [CgiDecode $name]

156 Regular Expressions Chap. 11

if {[info exists cgilist($name)] &&
($cgilist($name) == 1)} {

Add second value and create list structure
set cgi($name) [list $cgi($name) \

[Url_Decode $value]]
} elseif {[info exists cgi($name)]} {

Add additional list elements
lappend cgi($name) [CgiDecode $value]

} else {
Add first value without list structure
set cgi($name) [CgiDecode $value]
set cgilist($name) 0 ;# May need to listify

}
incr cgilist($name)

}
return [array names cgi]

}
proc Cgi_Value {key} {

global cgi
if {[info exists cgi($key)]} {

return $cgi($key)
} else {

return {}
}

}
proc Cgi_Length {key} {

global cgilist
if {[info exist cgilist($key)]} {

return $cgilist($key)
} else {

return 0
}

}

Decoding HTML Entities

The next example is a decoder for HTML entities. In HTML, special charac-
ters are encoded as entities. If you want a literal < or > in your document, you
encode them as the entities < and >, respectively, to avoid conflict with the
<tag> syntax used in HTML. HTML syntax is briefly described in Chapter 3 on
page 32. Characters with codes above 127 such as copyright  and egrave è are
also encoded. There are named entities, such as < for < and è for è.
You can also use decimal-valued entities such as © for . Finally, the trail-
ing semicolon is optional, so < or < can both be used to encode <.

The entity decoder is similar to Url_Decode. In this case, however, we need
to be more careful with subst. The text passed to the decoder could contain spe-
cial characters like a square bracket or dollar sign. With Url_Decode we can rely
on those special characters being encoded as, for example, %24. Entity encoding is
different (do not ask me why URLs and HTML have different encoding stan-
dards), and dollar signs and square brackets are not necessarily encoded. This

Transforming Data to Program with regsub 157
II. A

d
va

nc
e

d
 Tc

l

requires an additional pass to quote these characters. This regsub puts a back-
slash in front of all the brackets, dollar signs, and backslashes.

regsub -all {[][$\\]} $text {\\&} new

The decimal encoding (e.g., ©) is also more awkward than the hexa-
decimal encoding used in URLs. We cannot force a decimal interpretation of a
number in Tcl. In particular, if the entity has a leading zero (e.g.,
) then
Tcl interprets the value (e.g., 010) as octal. The scan command is used to do a
decimal interpretation. It scans into a temporary variable, and set is used to get
that value:

regsub -all {&#([0-9][0-9]?[0-9]?);?} $new \

{[format %c [scan \1 %d tmp; set tmp]]} new

With advanced regular expressions, this could be written as follows using
bound quantifiers to specify one to three digits:

regsub -all {&#(\d{1,3});?} $new \

{[format %c [scan \1 %d tmp;set tmp]]} new

The named entities are converted with an array that maps from the entity
names to the special character. The only detail is that unknown entity names
(e.g., &foobar;) are not converted. This mapping is done inside HtmlMapEntity,
which guards against invalid entities.

regsub -all {&([a-zA-Z]+)(;?)} $new \

{[HtmlMapEntity \1 \\\2]} new

If the input text contained:
[x < y]

then the regsub would transform this into:
\[x [HtmlMapEntity lt \;] y\]

Finally, subst will result in:
[x < y]

Example 11–8 Html_DecodeEntity.

proc Html_DecodeEntity {text} {
if {![regexp & $text]} {return $text}
regsub -all {[][$\\]} $text {\\&} new
regsub -all {&#([0-9][0-9]?[0-9]?);?} $new {\

[format %c [scan \1 %d tmp;set tmp]]} new
regsub -all {&([a-zA-Z]+)(;?)} $new \

{[HtmlMapEntity \1 \\\2]} new
return [subst $new]

}
proc HtmlMapEntity {text {semi {}}} {

global htmlEntityMap
if {[info exist htmlEntityMap($text)]} {

return $htmlEntityMap($text)
} else {

return $text$semi
}

}

158 Regular Expressions Chap. 11

Some of the htmlEntityMap
array set htmlEntityMap {

lt < gt > amp &
aring \xe5 atilde \xe3
copy \xa9 ecirc \xea egrave \xe8

}

A Simple HTML Parser

The following example is the brainchild of Stephen Uhler. It uses regsub to
transform HTML into a Tcl script. When it is evaluated the script calls a proce-
dure to handle each tag in an HTML document. This provides a general frame-
work for processing HTML. Different callback procedures can be applied to the
tags to achieve different effects. For example, the html_library-0.3 package on
the CD-ROM uses Html_Parse to display HTML in a Tk text widget.

Example 11–9 Html_Parse.

proc Html_Parse {html cmd {start {}}} {

Map braces and backslashes into HTML entities
regsub -all \{ $html {\&ob;} html
regsub -all \} $html {\&cb;} html
regsub -all {\\} $html {\&bsl;} html

This pattern matches the parts of an HTML tag
set s" \t\r\n" ;# white space
set exp <(/?)(\[^$s>]+)\[$s]*(\[^>]*)>

This generates a call to cmd with HTML tag parts
\1 is the leading /, if any
\2 is the HTML tag name
\3 is the parameters to the tag, if any
The curly braces at either end group of all the text
after the HTML tag, which becomes the last arg to $cmd.
set sub "\}\n$cmd {\\2} {\\1} {\\3} \{"
regsub -all $exp $html $sub html

This balances the curly braces,
and calls $cmd with $start as a pseudo-tag
at the beginning and end of the script.
eval "$cmd {$start} {} {} {$html}"
eval "$cmd {$start} / {} {}"

}

The main regsub pattern can be written more simply with advanced regu-
lar expressions:

set exp {<(/?)(\S+?)\s*(.*?)>}

An example will help visualize the transformation. Given this HTML:

Transforming Data to Program with regsub 159
II. A

d
va

nc
e

d
 Tc

l

<Title>My Home Page</Title>
<Body bgcolor=white text=black>
<H1>My Home</H1>
This is my home page.

and a call to Html_Parse that looks like this:
Html_Parse $html {Render .text} hmstart

then the generated program is this:

Render .text {hmstart} {} {} {}
Render .text {Title} {} {} {My Home Page}
Render .text {Title} {/} {} {
}
Render .text {Body} {} {bgcolor=white text=black} {
}
Render .text {H1} {} {} {My Home}
Render .text {H1} {/} {} {
This is my }
Render .text {b} {} {} {home}
Render .text {b} {/} {} { page.
}
Render .text {hmstart} / {} {}

One overall point to make about this example is the difference between
using eval and subst with the generated script. The decoders shown in Exam-
ples 11–5 and 11–8 use subst to selectively replace encoded characters while
ignoring the rest of the text. In Html_Parse we must process all the text. The
main trick is to replace the matching text (e.g., the HTML tag) with some Tcl
code that ends in an open curly brace and starts with a close curly brace. This
effectively groups all the unmatched text.

When eval is used this way you must do something with any braces and
backslashes in the unmatched text. Otherwise, the resulting script does not
parse correctly. In this case, these special characters are encoded as HTML enti-
ties. We can afford to do this because the cmd that is called must deal with
encoded entities already. It is not possible to quote these special characters with
backslashes because all this text is inside curly braces, so no backslash substitu-
tion is performed. If you try that the backslashes will be seen by the cmd callback.

Finally, I must admit that I am always surprised that this works:
eval "$cmd {$start} {} {} {$html}"

I always forget that $start and $html are substituted in spite of the braces.
This is because double quotes are being used to group the argument, so the quot-
ing effect of braces is turned off. Try this:

set x hmstart

set y "foo {$x} bar"

=> foo {hmstart} bar

160 Regular Expressions Chap. 11

Stripping HTML Comments

The Html_Parse procedure does not correctly handle HTML comments. The
problem is that the syntax for HTML commands allows tags inside comments, so
there can be > characters inside the comment. HTML comments are also used to
hide Javascript inside pages, which can also contain >. We can fix this with a
pass that eliminates the comments.

The comment syntax is this:
<!-- HTML comment, could contain <markup> -->

Using nongreedy quantifiers, we can strip comments with a single regsub:
regsub -all <!--.*?--> $html {} html

Using only greedy quantifiers, it is awkward to match the closing --> with-
out getting stuck on embedded > characters, or without matching too much and
going all the way to the end of the last comment. Time for another trick:

regsub -all --> $html \x81 html

This replaces all the end comment sequences with a single character that is
not allowed in HTML. Now you can delete the comments like this:

regsub -all "<!--\[^\x81\]*\x81" $html {} html

Other Commands That Use Regular Expressions

Several Tcl commands use regular expressions.
• lsearch takes a -regexp flag so that you can search for list items that

match a regular expression. The lsearch command is described on page 64.
• switch takes a -regexp flag, so you can branch based on a regular expres-

sion match instead of an exact match or a string match style match. The
switch command is described on page 71.

• The Tk text widget can search its contents based on a regular expression
match. Searching in the text widget is described on page 461.

• The Expect Tcl extension can match the output of a program with regular
expressions. Expect is the subject of its own book, Exploring Expect
(O’Reilly, 1995) by Don Libes.

