C H AP TE R 18

TclHttpd Web Server

This chapter describes TclHttpd, a Web server built entirely in Tcl. The Web
server can be used as a standalone server, or it can be embedded into
applications to Web-enable them. TclHttpd provides a Tcl+HTML
template facility that is useful for maintaining site-wide look and feel, and
an application-direct URL that invokes a Tcl procedure in an application.

This chapter is from Practical Programming in Tcl and Tk, 3rd Ed.
© 1999, Brent Welch
http://www.beedub.com/book/

TclHttpd started out as about 175 lines of
Tel that could serve up HTML pages and images. The Tecl socket and I/O com-
mands make this easy. Of course, there are lots of features in Web servers like
Apache or Netscape that were not present in the first prototype. Steve Uhler
took my prototype, refined the HTTP handling, and aimed to keep the basic
server under 250 lines. I went the other direction, setting up a modular architec-
ture, adding in features found in other Web servers, and adding some interesting
ways to connect TclHttpd to Tecl applications.

Today TclHttpd is used both as a general-purpose Web server, and as a
framework for building server applications. It implements www. scri ptics. com
including the Tcl Resource Center and Scriptics’ electronic commerce facilities. It
is also built into several commercial applications such as license servers and
mail spam filters. Instructions for setting up the TclHttpd on your platform are
given toward the end of the chapter, on page 266. It works on Unix, Windows,
and Macintosh. Using TclHttpd, you can have your own Web server up and run-
ning quickly.

This chapter provides an overview of the server and several examples of
how you can use it. The chapter is not an exhaustive reference to every feature.
Instead, it concentrates on a very useful subset of server features that I use the
most. There are references to Tcl files in the server’s implementation, which are
all found in the | i b directory of the distribution. You may find it helpful to read
the code to learn more about the implementation. You can find the source on the
CD-ROM.

243

>
Q
<
Qo
2
0
o
o}
—
Q

244 TclHttpd Web Server Chap. 18
Integrating TclHttpd with your Application

The bulk of this chapter describes the various ways you can extend the server
and integrate it into your application. TclHttpd is interesting because, as a Tcl
script, it is easy to add to your application. Suddenly your application has an
interface that is accessible to Web browsers in your company’s intranet or the
global Internet. The Web server provides several ways you can connect it to your
application:

e Static pages — As a "normal" Web server, you can serve static documents

that describe your application.

® Domain handlers — You can arrange for all URL requests in a section of
your Web site to be handled by your application. This is a very general
interface where you interpret what the URL means and what sort of pages
to return to each request. For example, http://ww. scriptics.com
resour ce is implemented this way. The URL past /resource selects an
index in a simple database, and the server returns a page describing the
pages under that index.

Application-Direct URLs — This is a domain handler that maps URLs onto
Tecl procedures. The form query data that is part of the HTTP GET or POST
request is automatically mapped onto the parameters of the application-
direct procedure. The procedure simply computes the page as its return
value. This is an elegant and efficient alternative to the CGI interface. For
example, in TclHttpd the URLs under /st atus report various statistics
about the Web server’s operation.

e Document handlers — You can define a Tcl procedure that handles all files
of a particular type. For example, the server has a handler for CGI scripts,
HTML files, image maps, and HTML+Tcl template files.

HTML+Tcl Templates — These are Web pages that mix Tcl and HTML
markup. The server replaces the Tcl using the subst command and returns
the result. The server can cache the result in a regular HTML file to avoid
the overhead of template processing on future requests. Templates are a
great way to maintain common look and feel to a family of Web pages, as
well as to implement more advanced dynamic HTML features like self-
checking forms.

TclHttpd Architecture

Figure 18-1 shows the basic components of the server. At the core is the
Ht t pd module (htt pd. t cl), which implements the server side of the HTTP proto-
col. The "d" in Httpd stands for daemon, which is the name given to system serv-
ers on UNI X. This module manages network requests, dispatches them to the Ur |
module, and provides routines used to return the results to requests.

The Url module (url.tcl) divides the Web site into domains, which are
subtrees of the URL hierarchy provided by the server. The idea is that different
domains may have completely different implementations. For example, the Docu-

Domain Handlers 245

File | | Other
System Applications
I Your Application I
I I
[A A [
I Z ||
||| Templates o [
Application
I Direct cal I
I Documents I
I I
I Url |
I I
| Httpd |
I I
| TclHttpd |
L o e e e e e — = |

Fig. 18-1 The dotted box represents one application that embeds TclHttpd. Document tem-
plates and Application Direct URLSs provide direct connections from an HTTP request to your
application.

ment domain (doc. t cl) maps its URLs into files and directories on your hard
disk, while the Application-Direct domain (di rect . t ¢l) maps URLs into Tcl pro-
cedure calls within your application. The CGI domain (cgi.tcl) maps URLs onto
other programs that compute Web pages.

Domain Handlers

You can implement new kinds of domains that provide your own interpretation of
a URL. This is the most flexible interface available to extend the Web server. You
provide a callback that is invoked to handle every request in a domain, or sub-
tree, of the URL hierarchy. The callback interprets the URL, computes the page
content, and returns the data using routines from the Ht t pd module.

Example 18-1 defines a simple domain that always returns the same page
to every request. The domain is registered with the Url _Prefixlnstall com-
mand. The arguments to Url _Prefixlnstal |l are the URL prefix and a callback
that is called to handle all URLs that match that prefix. In the example, all
URLs that have the prefix / si npl e are dispatched to the Si npl eDonai n proce-
dure.

>
Q
<
Qo
2
0
o
o}
—
Q

246 TclHttpd Web Server Chap. 18

Example 18-1 A simple URL domain.

Ul _Prefixinstall /sinple [list SinpleDomain /sinple]

proc Sinpl eDomain {prefix sock suffix} {
upvar #0 Httpd$sock data

Gener ate page header

set htm "<title>A sinple page</title>\n"
append htm "<h1>$prefix$suffix</hi>\n"
append htm "<hl>Date and Ti ne</hl>\n"
append htm [clock format [cl ock seconds]]
Display query data

if {[info exist data(query)]} {
append htm "<hl>Query Data</hl>\n"
append htm "<tabl e>\n"
foreach {nane val ue} [Url_DecodeQuery $data(query)] {
append html "<tr><td>$nanme</td>\n"
append htm "<td>$val ue</td></tr>\n"

append htm "</table>\n"

}
Htt pd_ReturnData $sock text/htm $htm

The Si npl eDomai n handler illustrates several properties of domain han-
dlers. The sock and suffix arguments to Sinpl eDomai n are appended by
Ur| _Di spat ch when it invokes the domain handler. The suf fi x parameter is the
part of the URL after the prefix. The prefi x is passed in as part of the callback
definition so the domain handler can recreate the complete URL. For example, if
the server receives a request for the URL / si npl e/ page, then the prefix is / si m
pl e, the suffix is / r equest .

Connection State and Query Data

The sock parameter is a handle on the socket connection to the remote cli-
ent. This variable is also used to name a state variable that the H t pd module
maintains about the connection. The name of the state array is Ht t pd$sock, and
Si mpl eDomai n uses upvar to get a more convenient name for this array (i.e.,
dat a):

upvar #0 Httpd$sock data

An important element of the state array is the query data, dat a(query).
This is the information that comes from HTML forms. The query data arrives in
an encoded format, and the Url _DecodeQuery procedure is used to decode the
data into a list of names and values. Url _DecodeQuery is similar to Cgi _Li st
from Example 11-5 on page 154 and is a standard function provided by url . tcl .

Application Direct URLs 247

Returning Results

Finally, once the page has been computed, the Ht t pd_Ret ur nDat a procedure
is used to return the page to the client. This takes care of the HTTP protocol as
well as returning the data. There are three related procedures,
Htt pd_ReturnFile, Htpd Error,and Htt pd_Redi rect . These are summarized in
Table 18—-1 on page 259.

Application Direct URLs

The Application Direct domain implementation provides the simplest way to
extend the Web server. It hides the details associated with query data, decoding
URL paths, and returning results. All you do is define Tcl procedures that corre-
spond to URLs. Their arguments are automatically matched up to the query data
as shown in Example 13-3 on page 179. The Tcl procedures compute a string
that is the result data, which is usually HTML. That’s all there is to it.

The Direct _Url procedure defines a URL prefix and a corresponding Tcl
command prefix. Any URL that begins with the URL prefix will be handled by a
corresponding Tcl procedure that starts with the Tcl command prefix. This is
shown in Example 18-2:

Example 18-2 Application Direct URLs.

Direct_Url /denp Deno

proc Demp {} {
return "<htm ><head><title>Denp page</title></head>\n\

<body><h1>Denmpo page</hl>\n\
What tinme is it?\n\
<f orm acti on=/ deno/ echo>\ n\
Dat a: <input type=text nane=data>\n\

\ n\
<i nput type=submt nane=echo val ue=’ Echo Data’ >\ n\
</ forme\ n\
</ body></ht m >"

proc Deno/time {{format "%t %M %6"}} {
return [clock format [clock seconds] -format $format]

proc Demo/echo {args} {
Conpute a page that echoes the query data

set htm "<head><title>Echo</title></head>\n"
append htm "<body><tabl e>\n"
foreach {nanme val ue} $args {
append htm "<tr><td>$nane</td><td>$val ue</td></tr>\n"

append htm "</tr></tabl e>\n"
return $htnm

>
Q
<
Qo
2
0
o
o}
—
Q

248 TclHttpd Web Server Chap. 18

Example 18-2 defines / deno as an Application Direct URL domain that is
implemented by procedures that begin with Deno. There are just three URLs
defined:

/ denmo
/denmo/tinme
/ denmo/ echo

The / deno page displays a hypertext link to the / demo/ t i me page and a sim-
ple form that will be handled by the / deno/ echo page. This page is static, and so
there is just one r et urn command in the procedure body. Each line of the string
ends with:

\ n\

This is just a formatting trick to let me indent each line in the procedure,
but not have the line indented in the resulting string. Actually, the \-newline
will be replaced by one space, so each line will be indented one space. You can
leave those off and the page will display the same in the browser, but when you
view the page source you’ll see the indenting. Or you could not indent the lines in
the string, but then your code looks somewhat odd.

The /denmpo/tine procedure just returns the result of clock format. It
doesn’t even bother adding <ht nl >, <head>, or <body> tags, which you can get
away with in today’s browsers. A simple result like this is also useful if you are
using programs to fetch information via HTTP requests.

Using Query Data

The / deno/ t i me procedure is defined with an optional f or mat argument. If
a format value is present in the query data, then it overrides the default value
given in the procedure definition.

The /demo/echo procedure creates a table that shows its query data. Its
ar gs parameter gets filled in with a name-value list of all query data. You can
have named parameters, named parameters with default values, and the ar gs
parameter in your application-direct URL procedures. The server automatically
matches up incoming form values with the procedure declaration. For example,
suppose you have an application direct procedure declared like this:

proc Demo/param{ a b {c cdef} args} { body }

You could create an HTML form that had elements named a, b, and c, and
specified /demo/param for the ACTI ON parameter of the FORM tag. Or you could
type the following into your browser to embed the query data right into the URL:

/ denmo/ par an?a=5&b=7&c=r ed&d=%'ewel ch&e=t wo+wor ds

In this case, when your procedure is called, a is 5, b is 7, ¢ is red, and the

ar gs parameter becomes a list of:
d ~wel ch e {two words}

The %’e and the + are special codes for nonalphanumeric characters in the
query data. Normally, this encoding is taken care of automatically by the Web
browser when it gets data from a form and passes it to the Web server. However,

Document Types 249

if you type query data directly or format URLs with complex query data in them,
then you need to think about the encoding. Use the Url _Encode procedure to
encode URLs that you put into Web pages.
If parameters are missing from the query data, they either get the default
values from the procedure definition or the empty string. Consider this example:
/ denmo/ par an?b=5
In this caseais"", b is 5, c is cdef, and ar gs is an empty list.

Returning Other Content Types

The default content type for application direct URLs is t ext/ ht Ml . You can
specify other content types by using a global variable with the same name as
your procedure. (Yes, this is a crude way to craft an interface.) Example 18-3
shows part of the faces. tcl file that implements an interface to a database of
picons — personal icons — that is organized by user and domain names. The
idea is that the database contains images corresponding to your e-mail corre-
spondents. The Faces_ByEnmmi| procedure, which is not shown, looks up an
appropriate image file. The application direct procedure is Faces/ byemai | , and it
sets the global variable Faces/ byenmil to the correct value based on the file-
name extension. This value is used for the Cont ent - Type header in the result
part of the HTTP protocol.

Example 18-3 Alternate types for Application Direct URLSs.

Direct_Url /faces Faces

proc Faces/byemail {emmil} {
gl obal Faces/byensi |
set filename [Faces_ByEmmil $enmil]
set Faces/byenmanil [Mype $fil enane]
set in [open $filenane]
fconfigure $in -translation binary
set X [read $in]
close $in
return $X

Document Types

The Document domain (doc. t cl) maps URLs onto files and directories. It pro-
vides more ways to extend the server by registering different document type han-
dlers. This occurs in a two-step process. First, the type of a file is determined by
its suffix. The m nme. t ypes file contains a map from suffixes to M ME types such as
text/htm or image/gif. This map is controlled by the Mype module in
ntype. tcl. Second, the server checks for a Tcl procedure with the appropriate
name:
Doc_mi net ype

>
Q
<
Qo
2
0
o
o}
—
Q

250 TclHttpd Web Server Chap. 18

The matching procedure, if any, is called to handle the URL request. The
procedure should use routines in the H'tpd module to return data for the
request. If there is no matching Doc_mi met ype procedure, then the default docu-
ment handler uses H t pd_Ret urnFi | e and specifies the Content Type based on
the file extension:

Htt pd_ReturnFile $sock [Mype $path] $path

You can make up new types to support your application. Example 18—4
shows the pieces needed to create a handler for a fictitious document type appl i -
cati on/ nyj unk that is invoked to handle files with the . j unk suffix. You need to
edit the nmi nme. t ypes file and add a document handler procedure to the server:

Example 18-4 A sample document type handler.

Add this line to mnme.types
appl i cation/ myj unk .junk

Define the docunment handl er procedure

path is the name of the file on disk

suffix is part of the URL after the domain prefix
sock is the handle on the client connection

proc Doc_application/nyjunk {path suffix sock} {
upvar #0 Httpd$sock data
data(url) is nore useful than the suffix paraneter.

Use the contents of file $path to conpute a page
set contents [sonefunc $path]

Determ ne your content type
set type text/htm

Return the page
Ht t pd_ReturnDat a $sock $type $data

As another example, the HTML+Tcl templates use the .t m suffix that is
mapped to the application/x-tcl-tenplate type. The TclHttpd distribution
also includes support for files with a . snnp extension that implements a tem-
plate-based Web interface to the Scotty SNMP Tcl extension.

HTML + Tcl Templates

The template system uses HTML pages that embed Tcl commands and Tel vari-
able references. The server replaces these using the subst command and returns
the results. The server comes with a general template system, but using subst is
so easy you could create your own template system. The general template frame-
work has these components:

HTML + Tcl Templates 251

e Each .htnl file has a corresponding .t template file. This feature is
enabled with the Doc_CheckTenpl at es command in the server’s configura-
tion file. Normally, the server returns the . ht M file unless the correspond-
ing .tnl file has been modified more recently. In this case, the server
processes the template, caches the result in the . ht mi file, and returns the
result.

¢ A dynamic template (e.g., a form handler) must be processed each time it is
requested. If you put the Doc_Dynani ¢ command into your page, it turns off
the caching of the result in the . ht i page. The server responds to a request
for a . ht Ml page by processing the . t M page. Or you can just reference the
.t file directly. If you do this, the server always processes the template.

¢ The server creates a page global Tcl variable that has context about the
page being processed. Table 18-7 lists the elements of the page array.

¢ The server initializes the env global Tcl variable with similar information,
but in the standard way for CGI scripts. Table 18-8 lists the elements of the
env array that are set by Cgi _Set Env in cgi . tcl .

¢ The server supports per-directory ". t m " files that contain Tcl source code.
These files are designed to contain procedure definitions and variable set-
tings that are shared among pages. The name of the file is simply ". tml ",
with nothing before the period. This is a standard way to hide files in
UNIX, but it can be confusing to talk about the per-directory ".tnml " files
and the file.tm templates that correspond to file.htm pages. The
server will source the ".tnl " files in all directories leading down to the
directory containing the template file. The server compares the modify time
of these files against the template file and will process the template if these
".tm" files are newer than the cached . htnl file. So, by modifying the
".tm " file in the root of your URL hierarchy, you invalidate all the cached
.htm files.

¢ The server supports a script library for the procedures called from tem-
plates. The Doc_Tenpl at eLi brary procedure registers this directory. The
server adds the directory to its aut o_path, which assumes you have a
tcl I ndex or pkgl ndex. tcl file in the directory so that the procedures are
loaded when needed.

>
Q
<
Qo
2
0
o
o}
—
Q

Where to put your Tcl Code

There are three places you can put the code of your application: directly in
your template pages, in the per-directory ". t m " files, or in the library directory.

The advantage of putting procedure definitions in the library is that they
are defined one time but executed many times. This works well with the Tcl byte-
code compiler. The disadvantage is that if you modify procedures in these files,
you have to explicitly source them into the server for these changes to take effect.
The / debug/ sour ce URL described on page 264 is handy for this chore.

The advantage of putting code into the per-directory ".tm " files is that
changes are picked up immediately with no effort on your part. The server auto-

252 TclHttpd Web Server Chap. 18

matically checks if these files are modified and sources them each time it pro-
cesses your templates. However, that code is run only one time, so the byte-code
compiler just adds overhead.

I try to put as little code as possible in my file.tnl template files. It is
awkward to put lots of code there, and you cannot share procedures and variable
definitions easily with other pages. Instead, my goal is to have just procedure
calls in the template files, and put the procedure definitions elsewhere. I also
avoid putting i f and f or each commands directly into the page.

Templates for Site Structure

The next few examples show a simple template system used to maintain a
common look at feel across the pages of a site. Example 18-5 shows a simple one-
level site definition that is kept in the root . t m file. This structure lists the title
and URL of each page in the site:

Example 18-5 A one-level site structure.

set site(pages) {
Hone /i ndex. ht m
"Ordering Conputers"/ordering. htm
"New Machi ne Setup" /setup.htmn
"Addi ng a New User" /newuser. htm
"“Net wor k Addresses" /network. htm

Each page includes two commands, Si t ePage and Si t eFoot er, that gener-
ate HTML for the navigational part of the page. Between these commands is reg-
ular HTML for the page content. Example 18—6 shows a sample template file:

Example 18-6 A HTML + Tcl template file.

[SitePage "New Machi ne Setup"]

Thi s page describes the steps to take when setting up a new
conputer in our environment. See

Ordering Comput ers

for instructions on ordering machi nes.

Unpack and setup the machi ne.

Use the Network control panel to set the |P address

and host name.

<l-- Several steps onitted -->
<l i >Reboot for the last tine.
</ ol >

[SiteFooter]

The Si t ePage procedure takes the page title as an argument. It generates
HTML to implement a standard navigational structure. Example 18-7 has a
simple implementation of Si t ePage:

HTML + Tcl Templates 253

Example 18-7 Si t ePage template procedure.

proc SitePage {title} {
gl obal site
set htm "<htm ><head><title>$title</title></head>\n"
append htm "<body bgcol or=white text=bl ack>\n"
append htm "<h1>$titl e</hl>\n"
set sep ""
foreach {label url} $site(pages) {
append htm $sep
if {[string conpare $l abel $title] == 0} {
append htnml "$l abel "
} else {
append htm "$l abel </ a>"

set sep " | "

}
return $htn

The f or each loop that computes the simple menu of links turns out to be
useful in many places. Example 18-8 splits out the loop and uses it in the Sit e-
Page and Si t eFoot er procedures. This version of the templates creates a left col-
umn for the navigation and a right column for the page content:

Example 18-8 Si t eMenu and Si t eFoot er template procedures.

proc SitePage {title} {

gl obal site

set htm "<htm ><head><title>$title</title></head>\n\
<body bgcol or=$site(bg) text=$site(fg)>\n\
<l-- Two Col umm Layout -->\n\
<tabl e cel | paddi ng=0>\ n\
<tr><td>\n\
<l-- Left Colum -->\n\
<inmg src="$site(minlogo)’ >\n\
\n\
[SiteMenu
 $site(pages)]\n\
</ font>\n\
</t d><t d>\ n\
<l-- Right Colum -->\n\
<h1>$titl e</ hl>\n\
<p>\n"

return $htnm

proc SiteFooter {} {
gl obal site
set htm "<p><hr>\n\
[SiteMenu | $site(pages)]\n\
</td></tr></tabl e>\n"
return $htnm

}
proc SiteMenu {sep list} {

>
Q
<
Qo
2
0
o
o}
—
Q

254 TclHttpd Web Server Chap. 18

gl obal page
set s ""
set htm ""

foreach {label url} $list {
if {[string conpare $page(url) $url] == 0} {
append htnl sl abel
} else {
append htm "sl abel </ a>"

set s $sep

}
return $htn

Of course, a real site will have more elaborate graphics and probably a two-
level, three-level, or more complex tree structure that describes its structure.You
can also define a family of templates so that each page doesn’t have to fit the
same mold. Once you start using templates, it is fairly easy to change both the
template implementation and to move pages around among different sections of
your Web site.

There are many other applications for "macros" that make repetitive HTML
coding chores easy. Take, for example, the link to / ordering. ht M in Example
18-6. The proper label for this is already defined in $si t e(pages), so we could
introduce a Si t eLi nk procedure that uses this:

Example 18-9 The Si t eLi nk procedure.

proc SiteLink {label} {
gl obal site
array set map $site(pages)
if {[info exist map($label)]} {
return "$l abel </ a>"
} else {
return $l abel
}

If your pages embed calls to Si t eLi nk, then you can change the URL associ-
ated with the page name by changing the value of si t e(pages) . If this is stored
in the top-level ". t m " file, the templates will automatically track the changes.

Form Handlers

HTML forms and form-handling programs go together. The form is presented to
the user on the client machine. The form handler runs on the server after the
user fills out the form and presses the submit button. The form presents input
widgets like radiobuttons, checkbuttons, selection lists, and text entry fields.
Each of these widgets is assigned a name, and each widget gets a value based on

Form Handlers 255

the user’s input. The form handler is a program that looks at the names and val-
ues from the form and computes the next page for the user to read.

CGI is a standard way to hook external programs to Web servers for the
purpose of processing form data. CGI has a special encoding for values so that
they can be transported safely. The encoded data is either read from standard
input or taken from the command line. The CGI program decodes the data, pro-
cesses it, and writes a new HTML page on its standard output. Chapter 3
describes writing CGI scripts in Tcl.

TclHttpd provides alternatives to CGI that are more efficient because they
are built right into the server. This eliminates the overhead that comes from run-
ning an external program to compute the page. Another advantage is that the
Web server can maintain state between client requests in Tcl variables. If you
use CGI, you must use some sort of database or file storage to maintain informa-
tion between requests.

Application Direct Handlers

The server comes with several built-in form handlers that you can use with
little effort. The / mai | / f or mi nf o URL will package up the query data and mail it
to you. You use form fields to set various mail headers, and the rest of the data is
packaged up into a Tcl-readable mail message. Example 18-10 shows a form
that uses this handler. Other built-in handlers are described starting at page
263.

Example 18-10 Mail form results with / mai | / f or m nf o.

<form action=/mail/form nfo nethod=post >
<i nput type=hi dden nane=sendto val ue=mail r eader @ry. conm>
<i nput type=hi dden nanme=subj ect val ue="Nanme and Address">
<t abl e>
<t r><t d>Nanme</t d><t d><i nput nane=name></td></tr>
<tr><t d>Addr ess</t d><t d><i nput nane=addr 1></td></tr>
<tr><td> </td><td><i nput name=addr2></td></tr>
<tr><td>Ci ty</td><td><i nput name=city></td></tr>
<tr><td>Stat e</td><t d><i nput nane=state></td></tr>
<tr><t d>Zi p/ Post al </t d><td><i nput name=zi p></td></tr>
<tr><td>Country</td><t d><i nput nane=country></td></tr>
</tabl e>
</ form

The mail message sent by / mai | / f or ni nf 0 is shown in Example 18-11.

Example 18-11 Mail message sent by / mai | / f or m nf o.

To: nmmilreader @y.com
Subj ect: Name and Address

data {
nane {Joe Visitor}

>
Q
<
Qo
2
0
o
o}
—
Q

256 TclHttpd Web Server Chap. 18

addr1 {Acne Conmpany}
addr2 {100 Main Street}
city {Mountain View
state California

zip 12345

country USA

It is easy to write a script that strips the headers, defines a dat a procedure,
and uses eval to process the message body. Whenever you send data via e-mail, if
you format it with Tecl list structure, you can process it quite easily. The basic
structure of such a mail reader procedure is shown in Example 18-12:

Example 18-12 Processing mail sent by / mai | / f or m nf o.

Assunme the mail message is on standard input
set X [read stdin]

Strip off the mail headers, when end with a blank |ine
if {[regsub {.*?\n\ndata} $X {data} X] != 1} {
error "Mal forned nmail nmessage"

}
proc data {fields} {
foreach {nane val ue} $fields {
Do sonet hi ng
}
}

Process the message. For added security, you may want
do this part in a safe interpreter.
eval $X

Template Form Handlers

The drawback of using application-direct URL form handlers is that you
must modify their Tcl implementation to change the resulting page. Another
approach is to use templates for the result page that embed a command that
handles the form data. The Mai | _For m nf o procedure, for example, mails form
data. It takes no arguments. Instead, it looks in the query data for sendt o and
subj ect values, and if they are present, it sends the rest of the data in an e-mail.
It returns an HTML comment that flags that mail was sent.

When you use templates to process form data, you need to turn off result
caching because the server must process the template each time the form is sub-
mitted. To turn off caching, embed the Doc_Dynani ¢ command into your form
handler pages, or set the page(dynani c) variable to 1. Alternatively, you can
simply post directly to the fil e.t i page instead of to the fil e. ht nl page.

Form Handlers 257

Self Posting Forms

This section illustrates a self-posting form. This is a form on a page that
posts the form data to back to the same page. The page embeds a Tcl command to
check its own form data. Once the data is correct, the page triggers a redirect to
the next page in the flow. This is a powerful technique that I use to create com-
plex page flows using templates. Of course, you need to save the form data at
each step. You can put the data in Tecl variables, use the data to control your
application, or store it into a database. TclHttpd comes with a Sessi on module,
which is one way to manage this information. For details you should scan the
session. tcl file in the distribution.

Example 18-13 shows the For m Si npl e procedure that generates a simple
self-checking form. Its arguments are a unique ID for the form, a description of
the form fields, and the URL of the next page in the flow. The field description is
a list with three elements for each field: a required flag, a form element name,
and a label to display with the form element. You can see this structure in the
template shown in Example 18-14 on page 258. The procedure does two things
at once. It computes the HTML form, and it also checks if the required fields are
present. It uses some procedures from the f or m module to generate form ele-
ments that retain values from the previous page. If all the required fields are
present, it discards the HTML, saves the data, and triggers a redirect by calling
Doc_Redirect.

Example 18-13 A self-checking form procedure.

proc Form Sinple {id fields nextpage} {
gl obal page
if {![form:enpty formd]} {
I nconmi ng formval ues, check them
set check 1
} else {
First time through the page
set check 0
}
set htm "<!-- Self-posting. Next page is $nextpage -->\n"
append htm "<form action=\"$page(url)\" method=post>\n"
append htm "<input type=hi dden name=form d val ue=$i d>\ n"
append htm "<table border=1>\n"
foreach {required key label} $fields {
append htm "<tr><td>"
if {$check && $required && [form:enmpty $key]} {
| append mi ssing $l abel
append htm "*"

append htm "</td><td>$l abel </td>\n"
append htm "<td><input [form:val ue $key] ></td>\n"
append html "</tr>\n"

}
append htm "</table>\n"
if {$check} ({
if {![info exist missing]} {

>
Q
<
Qo
2
0
o
o}
—
Q

258 TclHttpd Web Server Chap. 18

No missing fields, so advance to the next page.
In practice, you nust save the existing fields
at this point before redirecting to the next page.

Doc_Redirect $nextpage
} else {
set nsg "Pl ease fill in
append nsg [join $missing ", "]
append nsg ""
set htm <p>$nsg\ n$ht m

}

append htm "<input type=subm t>\n</form\n"
return $htnl

Example 18-14 shows a page template that calls For m Si npl e with the
required field description.

Example 18-14 A page with a self-checking form.

<ht m ><head>
<title>Nane and Address Fornk/title>
</ head>
<body bgcol or=whi te text=bl ack>
<hl>Nane and Address</hil>
Pl ease enter your nanme and address.
[myform:sinple naneaddr {

1 nanme "Nanme"

1 addril " Addr ess"
0 addr2" "Address"
1city "City"

0 state " St ate"

1 zip "Zip Code"
0 country "Country"

} naneok. htm]
</ body></htm >

The f or mpackage

TclHttpd comes with a f or mpackage (f or m t ¢l) that is designed to support
self-posting forms. The For m Si npl e procedure uses f orm : enpty to test if par-
ticular form values are present in the query data. For example, it tests to see
whether the f or mi d field is present so that the procedure knows whether or not
to check for the rest of the fields. The f or m : val ue procedure is useful for con-
structing form elements on self-posting form pages. It returns:

nane="nanme" val ue="val ue"

The val ue is the value of form element nane based on incoming query data,

or just the empty string if the query value for nane is undefined. As a result, the

Programming Reference 259

form can post to itself and retain values from the previous version of the page. It
is used like this:
<i nput type=text [form:val ue nane]>
The form :checkval ue and form :radi oval ue procedures are similar to
form:value but designed for checkbuttons and radio buttons. The
form :sel ect procedure formats a selection list and highlights the selected val-
ues. The f or m : dat a procedure simply returns the value of a given form element.
These are summarized in Table 18-6 on page 261.

Programming Reference

This section summarizes many of the more useful functions defined by the
server. These tables are not complete, however. You are encouraged to read
through the code to learn more about the features offered by the server.

Table 18—-1 summarizes the Ht t pd functions used when returning pages to
the client.

Table 18-1 Htt pd support procedures.

Htt pd_Error sock code Returns asimple error pageto the client. Thecode isa
numeric error code like 404 or 500.

Ht t pd_Ret urnDat a sock Returns a page with Content-Typet ype and content
type data dat a.

Htt pd_ReturnFil e sock Returnsafi | e with Content-Typet ype.
type file

Ht t pd_Redi rect newurl Generates a 302 error return with aLocation of newur | .
sock

Httpd_Sel fUrl wurl Expandsur | toinclude the properhtt p: //

server: port prefix to reference the current server.

Table 18-2 summarizes a few useful procedures provided by the UrI module
(url.tcl). The Url _DecodeQuery is used to decode query data into a Tcl-friendly
list. The Url _Encode procedure is useful when encoding values directly into
URLs. URL encoding is discussed in more detail on page 247.

Table 18-2 Ur | support procedures.

Url _DecodeQuery query Decodes awww ur | - encoded query string and return
aname, valuelist.

Url _Encode val ue Returnsval ue encoded according to the www-url-
encoded standard.

Ul _Prefxlnstall prefix Registerscal | back asthe handler for all URLs that
cal | back begin with pr ef i x. The callback isinvoked with two
additional arguments: sock, the handle to the client, and
suf fi x, the part of the URL after pr ef i x.

>
Q
<
Qo
2
0
o
o}
—
Q

260

The Doc module provides procedures for configuration and generating

TclHttpd Web Server Chap. 18

responses, which are summarized in Tables 18-3 and 18-4, respectively.

Table 18-3 Doc procedures for configuration.

Doc_Root ?directory?
Doc_AddRoot virtual
directory
Doc_ErrorPage file
Doc_CheckTenpl at es how

Doc_I ndexFil e pattern

Doc_Not FoundPage fil e

Doc_PublicH m dirname

Doc_Tenpl ateLi brary
directory

Doc_Tenpl atelnterp interp

Doc_Webnaster ?email ?

Setsor queriesthedi r ect or y that corresponds to the
root of the URL hierarchy.

Mapsthefile systemdi r ect or y into the URL subtree
starting at vi rt ual .

Specifiesafi | e relative to the document root used as a
simple template for error messages. Thisis processed by
DocSubst Syst emfileindoc. tcl .

If howis1,then. ht M filesare compared against corre-
sponding . t M files and regenerated if necessary.

Registersafile namepat t er n that will be searched for
the default index file in directories.

Specifiesafi | e relative to the document root used as a
simple template for page not found messages. Thisis pro-
cessed by DocSubst Syst emfileindoc. tcl .

Defines the directory used for each users home directory.
When aURL like~user isspecified, thedi r name
under their home directory is accessed.

Addsdi rect ory totheaut o_pat h so the source
filesin it are available to the server.

Specifies an alternate interpreter in which to process doc-
ument templates (i.e., . t m files)

Setsor queriestheemai | for the Webmaster.

Table 18-4 Doc procedures for generating responses.

Doc_Error sock errorlnfo

Doc_Not Found sock

Doc_Subst sock file
?interp?

Generates a 500 response on sock based on the template
registered with Doc_Err or Page.errorlnfoisa
copy of the Tcl error trace after the error.

Generates a 404 response on sock by using the template
registered with Doc__Not FoundPage.

Performsasubst on thefile and return the resulting
pageonsock. i nt er p specifies an aternate Tcl inter-
preter.

The Doc module also provides procedures for cookies and redirects that are

useful in document templates. These are described in Table 18-5.

Programming Reference 261

Table 18-5 Doc procedures that support template processing.

Doc_Coooki e nane Returns the cookie name passed to the server for this
reguest, or the empty string if it is not present.

Doc_Dynami ¢ Turns off caching of the HTML result. Meant to be called
from inside a page template.

Doc_I sLi nkToSel f url Returns 1 if theur | isalink to the current page.

Doc_Redi rect newurl Raises a special error that aborts template processing and

triggers a page redirect to newur | .

Doc_Set Cooki e - name nane Setscookie nanme with the givenval ue that will be
-val ue val ue -path path returned to the client as part of the response. The pat h
-donmai n donmai n - expires anddonai n restrict the scope of the cooke. Thedat e
date sets an expiration date.

Table 18—6 describes the f or mmodule that is useful for self-posting forms,
which are discussed on page 257.

Table 18-6 The f or mpackage.

form:data name Returns the value of the form value name, or the empty string.
form:enpty nane Returns 1 if the form value nane ismissing or zero length.
form:val ue nanme Returns name="nane" val ue="val ue", whereval ue
comes from the query data, if any.
form : checkval ue Returns name="nane" val ue="val ue" CHECKED, if
nanme val ue val ue is present in the query datafor nane. Otherwise, it just
returnsnanme="nane" val ue="val ue".
form:radi oval ue Returnsnane="nane" val ue="val ue" CHECKED, if the
nanme val ue query datafor nane isequal toval ue. Otherwise, it just
returnsnanme="nane" val ue="val ue".
form:sel ect nane Generatesasel ect form element with namenane. Theval -
val uel i st args uel i st determinestheopt i on tagsand values, andar gs are

optional parametersto themainsel ect tag.

Table 18-7 shows the initial elements of the page array that is defined dur-
ing the processing of a template.

Table 18-7 Elements of the page array.

query The decoded query datain aname, value list.

dynam ¢ If 1, theresults of processing the template are not cached in the corresponding
.htr file

fil ename The file system pathname of the requested file (e.g., / usr/ 1 ocal /

ht docs/tcl httpd/index. htm).

>
Q
<
Qo
2
0
o
o}
—
Q

262

TclHttpd Web Server Chap. 18

Table 18-7 Elements of the page array. (Continued)

tenpl ate The file system pathname of the template file (e.g., /usr/1 ocal /

ht docs/tcl httpd/index.tm).
ur | The part of the url after the server name (e.g.,/ t cl htt pd/ i ndex. ht m).
r oot A relative path from the template file back to the root of the URL tree. Thisis

useful for creating relative links between pages in different directories.

Table 18-8 shows the elements of the env array. These are defined during
CGI requests, application-direct URL handlers, and page template processing:

Table 18-8 Elements of the env array.

AUTH_TYPE
CONTENT_LENGTH
CONTENT_TYPE
DOCUMENT _ROOT

GATEWAY_| NTERFACE

HTTP_ACCEPT

HTTP_AUTHORI ZATI ON

HTTP_COOKI E
HTTP_FROM
HTTP_REFERER
HTTP_USER AGENT
PATH_I NFO
PATH_TRANSLATED
QUERY_STRI NG
REMOTE_ADDR
REMOTE_USER
REQUEST METHOD
REQUEST_URI

SCRI PT_NAMVE
SERVER NAVE
SERVER_PORT
SERVER_PROTOCOL
SERVER SOFTWARE

Authentication protocol (e.g., Basi c).

The size of the query data.

The type of the query data.

File system pathname of the document root.

Protocol version, whichisCG / 1. 1.

The Accept headers from the request.

The Authorization challenge from the request.

The cookie from the request.

The From: header of the request.

The Referer indicates the previous page.

An ID string for the Web browser.

Extra path information after the template file.

The extra path information appended to the document root.
The form query data.

Theclient’s |P address.

The remote user name specified by Basic authentication.
GET, POST, or HEAD.

The complete URL that was requested.

The name of the current file relative to the document root.
The server name, e.g., ww. beedub. com

The server’s port, e.g., 80.

The protocol (e.g., htt p or htt ps).

A software version string for the server.

Standard Application-Direct URLs 263

Standard Application-Direct URLs

The server has several modules that provide application-direct URLs. These
application-direct URLs lets you control the server or examine its state from any
Web browser. You can look at the implementation of these modules as examples
for your own application.

Status

The / st at us URL is implemented in the st at us. tcl file. The status mod-
ule implements the display of hit counts, document hits, and document misses
(i.e., documents not found). The Status_Url command enables the application-
direct URLs and assigns the top-level URL for the status module. The default
configuration file contains this command:

Status_Url /status
Assuming this configuration, the following URLs are implemented:

Table 18-9 Status application-direct URLs.

/ st at us Main status page showing summary counters and hit count histograms.

/ st at us/ doc Shows hit counts for each page. This page lets you sort by name or hit
count, and limit files by patterns.

/status/hello A trivial URL that returns "hello".

/ st at us/ not f ound Shows miss counts for URLs that users tried to fetch.

/ st atus/ si ze Displays an estimated size of Tcl code and Tcl data used by the TclHt-
tpd program.
/ st atus/t ext Thisisaversion of the main status page that doesn’t use the graphical

histograms of hit counts.

Debugging
The / debug URL is implemented in the debug. tcl file. The debug module
has several useful URLs that let you examine variable values and other internal
state. It is turned on with this command in the default configuration file:
Debug_Url /debug
Table 18-10 lists the / debug URLs. These URLs often require parameters
that you can specify directly in the URL. For example, the / debug/ echo URL
echoes its query parameters:
http://yourserver: port/debug/ echo?nane=val ue&nane2=val 2

>
Q
<
Qo
2
0
o
o}
—
Q

264

TclHttpd Web Server Chap. 18

Table 18-10 Debug application-direct URLs.

/ debug/ af t er
/ debug/ dbg

/ debug/ echo

/ debug/ errorlnfo

/ debug/ parr ay

/ debug/ pval ue

/ debug/ rai se

/ debug/ sour ce

Liststhe outstanding af t er events.

Connectsto TclPro Debugger. Thistakesahost and port
parameter. You need to install pr odebug. t ¢l from TclPro
into the server’s script library directory.

Echoes its query parameters. Acceptsat i t | e parameter.

Displaystheer r or | nf o variable along with the server’s ver-
sion number and Webmaster e-mail. Acceptsti t| e and
error | nf o arguments.

Displays aglobal array variable. The name of the variableis
specified with theanane parameter.

A more general value display function. The name of the variable
is specified with the aname parameter. This can be avariable
name, an array name, or a pattern that matches several variable
names.

Raises an error (to test error handling). Any parameters become
the error string.

Sources afile from either the server’s main library directory or
theDoc_Tenpl at eLi br ary directory. Thefileis specified
with the sour ce parameter.

The sample URL tree that is included in the distribution includes the file
ht docs/ hacks. ht ml . This file has several small forms that use the / debug URLs
to examine variables and source files. Example18-15 shows the implementation
of / debug/ sour ce. You can see that it limits the files to the main script library
and to the script library associated with document templates. It may seem dan-
gerous to have these facilities, but I reason that because my source directories
are under my control, it cannot hurt to reload any source files. In general, the
library scripts contain only procedure definitions and no global code that might
reset state inappropriately. In practice, the ability to tune (i.e., fix bugs) in the
running server has proven useful to me on many occasions. It lets you evolve
your application without restarting it!

Example 18-15 The / debug/ sour ce application-direct URL implementation.

proc Debug/source {source} {
gl obal Httpd Doc
set source [file tail $source]
set dirlist $Htpd(library)
if {[info exists Doc(tenplateLibrary)]} {
| append dirlist $Doc(tenplateLibrary)

}

foreach dir $dirlist {
set file [file join $dir $source]
if [file exists $file] {

br eak

Standard Application-Direct URLs 265

}

set error [catch {uplevel #0 [list source $file]} result]
set htm "<title>Source $source</title>\n"
if {$error} {
gl obal errorlnfo
append htm "<Hl1>Error in $source</Hl>\n"
append htm "<pre>$resul t <p>$errorl nfo</pre>
} else {
append htm "<Hl>Rel oaded $source</Hl1>\n"
append htm "<pre>$result</pre>"

return $htn

Administration

The / adni n URL is implemented in the admi n. t cl file. The admin module
lets you load URL redirect tables, and it provides URLs that reset some of the
counters maintained by the server. It is turned on with this command in the
default configuration file:

Admin_Ul /admn

Currently, there is only one useful admin URL. The /adnin/redirect/
rel oad URL sources the file named r edi rect in the document root. This file is
expected to contain a number of Url _Redirect commands that establish URL
redirects. These are useful if you change the names of pages and want the old
names to still work.

The administration module has a limited set of application-direct URLs
because the simple application-direct mechanism doesn’t provide the right hooks
to check authentication credentials. The HTML+Tcl templates work better with
the authentication schemes.

Sending Email

The /mai| URL is implemented in the mail.tcl file. The mail module
implements various form handlers that e-mail form data. Currently, it is UNIX-
specific because it uses / usr/1i b/ sendmai | to send the mail. It is turned on with
this command in the default configuration file:

Mail Ul /mail

The application-direct URLs shown in Table 18-11 are useful form han-
dlers. You can specify them as the ACTI ON parameter in your <FORM> tags. The
mail module provides two Tcl procedures that are generally useful. The Mai | | n-
ner procedure is the one that sends mail. It is called like this:

Mai | | nner sendto subject fromtype body

The sendto and from arguments are e-mail addresses. The type is the
Mime type (e.g., text/plain or text/htm) and appears in a Content- Type
header. The body contains the mail message without any headers.

>
Q
<
Qo
2
0
o
o}
—
Q

266 TclHttpd Web Server Chap. 18

Table 18-11 Application-direct URLS that e-mail form results.

/ mai | / bugr eport Sends e-mail withtheer r or | nf o from a server error. It takes
anenmai | parameter for the destination addressand an er r or -
| nf o parameter. Any additional arguments get included into the

message.

/mail/form nfo Sends e-mail containing form results. It requires these parame-
ters: sendt o for the destination address, subj ect for the mail
subject, hr ef and| abel for alink to display on the results
page. Any additional argumentsare formatted withtheTcl | i st
command for easy processing by programs that read the mail.

/mai |/ forndat a Thisisan older formof / mai | / f or mi nf o that doesn’t format
thedatainto Tcl lists. It requiresonly theenmai | and subj ect
parameters. Therest are formatted into the message body.

The Mai | _For m nf o procedure is designed for use in HTML+Tcl template
files. It takes no arguments but instead looks in current query data for its
parameters. It expects to find the same arguments as the / mai | / f or mi nf o direct
URL. Using a template with Mai | _Form nfo gives you more control over the
result page than posting directly to / mai | / f or m nf o, and is illustrated in Exam-
ple 18-10 on page 255.

The TclHttpd Distribution

Get the TclHttpd distribution from the CD-ROM, or find it on the Internet at:
ftp://ftp.scriptics.com pub/tcl/httpd/
http://wwv scriptics.conmtclhttpd/

Quick Start

Unpack the tar file or the zip file, and you can run the server from the

httpd. tcl script in the bi n directory. On UNIX:
tclsh httpd.tcl -port 80

This command will start the Web server on the standard port (80). By
default it uses port 8015 instead. If you run it with the - hel p flag, it will tell you
what command line options are available. If you use wish instead of ¢clsh, then a
simple Tk user interface is displayed that shows how many hits the server is get-
ting.

On Windows you can double-click the ht t pd. t cl script to start the server. It
will use wish and display the user interface. Again it will start on port 8015. You
will need to create a shortcut that passes the - port argument, or edit the associ-
ated configuration file to change this. Configuring the server is described later.

Once you have the server running, you can connect to it from your Web
browser. Use this URL if you are running on the default (nonstandard) port:

http://host nane: 8015/

Server Configuration 267

If you are running without a network connection, you may need to specify
127. 0. 0. 1 for the hostname. This is the "localhost" address and will bypass the
network subsystem.
http://127.0.0. 1: 8015/

Inside the Distribution

The TclHttpd distribution is organized into the following directories:

e bin — This has sample start-up scripts and configuration files. The
httpd. tcl script runs the server. The t cl htt pd. r c file is the standard con-
figuration file. The mini httpd.tcl file is the 250-line version. The t or-
ture. tcl file has some scripts that you can use to fetch many URLs at once
from a server.

¢ | i b — This has all the Tecl sources. In general, each file provides a package.
You will see the package requi re commands partly in bi n/ httpd. tcl and
partly in bin/tcl httpd.rc. The idea is that only the core packages are
required by httpd. tcl, and different applications can tune what packages
are needed by adjusting the contents of t cl htt pd. rc.

¢ htdocs — This is a sample URL tree that demonstrates the features of the
Web server. There is also some documentation there. One directory to note
is ht docs/ | i bt ml , which is the standard place to put site-specific Tcl scripts
used with the Tcl+HTML template facility.

e src — There are a few C source files for a some optional packages. These
have been precompiled for some platforms, and you can find the compiled
libraries back under | i b/ Bi nari es in platform-specific subdirectories.

Server Configuration

TclHttpd configures itself with three main steps. The first step is to process the
command line arguments described in Table 18-12. The arguments are copied
into the Config Tecl array. Anything not specified on the command line gets a
default value. The next configuration step is to source the configuration file. The
default configuration file is named tcl httpd.rc in the same directory as the
start-up script (i.e., bi n/ t cl ht t pd. r ¢). This file can override command line argu-
ments by setting the Confi g array itself. This file also has application-specific
package requi re commands and other Tcl commands to initialize the applica-
tion. Most of the Tcl commands used during initialization are described in the
rest of this section. The final step is to actually start up the server. This is done
back in the main htt pd. t cl script. For example, to start the server for the docu-
ment tree under / usr/ | ocal / ht docs and your own e-mail address as Webmaster,
you can execute this command to start the server:
tclsh httpd.tcl -docRoot /usr/local/htdocs -webmaster wel ch

Alternatively, you can put these settings into a configuration file, and start
the server with that configuration file:

>
Q
<
Qo
2
0
o
o}
—
Q

268 TclHttpd Web Server Chap. 18

tclsh httpd.tcl -config nytclhttpd.rc
In this case, the nmyt cl ht t pd. r ¢ file could contain these commands to hard-
wire the document root and Webmaster e-mail. In this case, the command line
arguments cannot override these settings:
set Config(docRoot) /usr/local/htdocs
set Config(webmaster) wel ch

Command Line Arguments

There are several parameters you may need to set for a standard Web
server. These are shown below in Table 18-12. The command line values are
mapped into the Confi g array by the htt pd. t ¢l start-up script.

Table 18-12 Basic TclHttpd Parameters.

Parameter Command Option Config Variable
Port number. The default is -port nunber Config(port)
8015.

Server name. The default is -name name Confi g(nane)
[info hostnane].

IP address. The default is0, -i paddr address Confi g(i paddr)

for "any address".

Directory of the root of the -docRoot directory Confi g(docRoot)
URL tree. The default isthe
ht docs directory.

User ID of the TclHttpd pro- -uid uid Confi g(ui d)
cess. Thedefaultis50. (UNIX

only.)
Group ID of the TclHttpd pro- -gid gid Confi g(gid)

cess. The default is100.
(UNIX only.)

Webmaster e-mail. Thedefault - webrmast er enai | Confi g(webnast er)
iswebmast er .

Configurationfile. Thedefault -config fil enane Config(file)
istcl httpd.rc.

Additional directorytoaddto -library directory Config(library)
theaut o_pat h.

Server Name and Port

The name and port parameters define how your server is known to Web
browsers. The URLs that access your server begin with:
http://name: port/

Server Configuration 269

If the port number is 80, you can leave out the port specification. The call
that starts the server using these parameters is found in htt pd. tcl as:
Ht t pd_Server $Config(nanme) $Config(port) $Config(ipaddr)
Specifying the IP address is necessary only if you have several network
interfaces (or several IP addresses assigned to one network interface) and want
the server to listen to requests on a particular network address. Otherwise, by
default, server accepts requests from any network interface.

User and Group ID

The user and group IDs are used on UNIX systems with the setui d and
set gi d system calls. This lets you start the server as root, which is necessary to
listen on port 80, and then switch to a less privileged user account. If you use
Tcl+HTML templates that cache the results in HTML files, then you need to pick
an account that can write those files. Otherwise, you may want to pick a very
unprivileged account.

The set ui d function is available through the TclX (Extended Tcl) i d com-
mand, or through a set ui d extension distributed with TclHttpd under the src
directory. If do not have either of these facilities available, then the attempt to
change user ID gracefully fails. See the README file in the src directory for
instructions on compiling and installing the extensions found there.

Webmaster Email

The Webmaster e-mail address is used for automatic error reporting in the
case of server errors. This is defined in the configuration file with the following
command:

Doc_Webrast er $Confi g(webmast er)

If you call Doc_Webnast er with no arguments, it returns the e-mail address
you previously defined. This is useful when generating pages that contain
mai | t o: URLs with the Webmaster address.

Document Root

The document root is the directory that contains the static files, templates,
CGI scripts, and so on that make up your Web site. By default the httpd.tcl script
uses the htdocs directory next to the directory containing htipd.tcl. It is worth
noting the trick used to locate this directory:
file join [file dirname [info script]] ../htdocs
The i nfo script command returns the full name of the http.tcl script,
file di rname computes its directory, and fi | e j oi n finds the adjacent directory.
The path . ./ ht docs works with fil e j oi n on any platform. The default location
of the configuration file is found in a similar way:
file join [file dirname [info script]] tclhttpd.rc
The configuration file initializes the document root with this call:

>
Q
<
Qo
2
0
o
o}
—
Q

270 TclHttpd Web Server Chap. 18

Doc_Root $Confi g(docRoot)

If you need to find out what the document root is, you can call Doc_Root
with no arguments and it returns the directory of the document root. If you want
to add additional document trees into your Web site, you can do that with a call
like this in your configuration file:

Doc_AddRoot directory urlprefix

Other Document Settings

The Doc_| ndexFi | e command sets a pattern used to find the index file in a
directory. The command used in the default configuration file is:
Doc_l ndexFil e index.{htmhtm ,tm 6 subst}

If you invent other file types with different file suffixes, you can alter this
pattern to include them. This pattern will be used by the Tcl gl ob command.

The Doc_Publ i cHt M command is used to define "home directories" on your
HTML site. If the URL begins with ~username, then the Web server will look
under the home directory of username for a particular directory. The command in
the default configuration file is:

Doc_PublicHt m public_htm

For example, if my home directory is / hone/ wel ch, then the URL ~wel ch
maps to the directory / home/ wel ch/ publ i c_ht m . If there is no Doc_Publ i cHt ni
command, then this mapping does not occur.

You can register two special pages that are used when the server encoun-
ters an error and when a user specifies an unknown URL. The default configura-
tion file has these commands:

Doc_ErrorPage error. htm
Doc_Not FoundPage not f ound. ht m

These files are treated like templates in that they are passed through subst
in order to include the error information or the URL of the missing page. These
are pretty crude templates compared to the templates described earlier. You can
count only on the Doc and Htpd arrays being defined. Look at the
Doc_Subst SystenfFil e in doc.tcl for the truth about how these files are pro-
cessed.

Document Templates

The template mechanism has two main configuration options. The first
specifies an additional library directory that contains your application-specific
scripts. This lets you keep your application-specific files separate from the TclHt-
tpd implementation. The command in the default configuration file specifies the
libtml directory of the document tree:

Doc_Tenpl ateLi brary [file join $Config(docRoot) Iibtm]

You can also specify an alternate Tcl interpreter in which to process the

templates. The default is to use the main interpreter, which is named {} accord-

Server Configuration 271

ing to the conventions described in Chapter 19.
Doc_Tenpl atelnterp {}

Log Files

The server keeps standard format log files. The Log_Set Fil e command
defines the base name of the log file. The default configuration file uses this com-
mand:

Log_SetFile /tnp/log$Config(port)_

By default the server rotates the log file each night at midnight. Each day’s
log file is suffixed with the current date (e.g., / t np/ | ogport _990218.) The error
log, however, is not rotated, and all errors are accumulated in /tnp/
| ogport_error.

The log records are normally flushed every few minutes to eliminate an
extra I/O operation on each HTTP transaction. You can set this period with
Log_Fl ushM nut es. If minutes is 0, the log is flushed on every HTTP transaction.
The default configuration file contains:

Log_Fl ushM nutes 1

CGl Directories

You can register a directory that contains CGI programs with the
Cgi _Directory command. This command has the interesting effect of forcing all
files in the directory to be executed as CGI scripts, so you cannot put normal
HTML files there. The default configuration file contains:

Cgi _Directory /cgi-bin

This means that the cgi - bi n directory under the document root is a CGI
directory. If you supply another argument to Cgi _Directory, then this is a file
system directory that gets mapped into the URL defined by the first argument.
You can also put CGI scripts into other directories and use the . cgi suffix to indi-
cate that they should be executed as CGI scripts.

The cgi . tcl file has some additional parameters that you can tune only by
setting some elements of the Cgi Tcl array. See the comments in the beginning of
that file for details.

>
Q
<
Qo
2
0
o
o}
—
Q

Blank page 272

