
349

C H A P T E R
 22

II. A

d
va

nc
e

d
 Tc

l

Tclkit and Starkits 22

Tclkit is a version of the Tcl/Tk interpreter that is designed to make packaging
and deployment of Tcl applications easy. Tclkit includes Tcl/Tk, [incr Tcl],
the Metakit database, and TclVFS. A Starkit is a special file that contains
all the scripts and supporting files you need for your Tcl application. This
chapter describes how to package and deploy your application as a
Starkit.

This Chapter is from Practical Programming in Tcl and Tk, 4th Ed.
Copyright 2003 © Brent Welch
http://www.beedub.com/book/
Tclkit was created by Jean-Claude Wip-
pler as a way to make deploying Tcl applications easier. Tclkit is an extended Tcl
interpreter that includes the Metakit database, the [incr Tcl] object-oriented sys-
tem, and a Virtual File System (VFS). The database is cleverly stored as part of
the Tclkit application itself, and the VFS interface is used to make the database
look like a private filesystem. Tclkit puts all the scripts normally associated with
Tcl and its extensions into this database. The result is a self-contained, single
file distribution of Tcl that includes extensions for your GUI, object-oriented pro-
gramming, a database, and a few other goodies.

Metakit is a fast, transactional database with a simple programming API.
Like Tcl, Metakit is a compact, efficient library designed to be embedded into
applications. The Tcl interface to Metakit gives you a simple, easy way to manip-
ulate persistent data. Although you do not have to program Metakit directly
when using Starkits, this Chapter does provide a short introduction to using
Metakit to store data for your application.

A Starkit is a Metakit database file that stores your application. The VFS
interface makes this transparent. Tclkit processes the Starkit just like tclsh or
wish, and your application doesn’t even have to know it is packaged inside a
Starkit.

The original Tclkit used an early version of VFS created by Matt Newman.
TclVFS was ported to the Tcl core in version 8.4.1 by Vince Darley. Today you
can build Tclkit using unmodified Tcl sources. The ActiveTcl distribution
includes Metakit, TclVFS and tools to create Starkits, too.

350 Tclkit and Starkits Chap. 22
Getting Started with Tclkit

Using Tclkit is easy. Just copy the version for your platform (e.g., Linux, Win-
dows or Solaris) into a convenient location under the name tclkit (or tclkit.exe on
Windows.) The CD-ROM has builds for lots of platforms, and you can find more
at the Tclkit home page:

http://www.equi4.com/tclkit

You can use the tclkit application just like tclsh. Run with no arguments, it
prints a prompt and you can type Tcl commands interactively. If you pass a file
argument, then it sources that file just as tclsh would. To use tclkit like wish, you
must add this to your scripts:

package require Tk

Although you can use tclkit to source .tcl files, tclkit is normally used to
interpret Starkits, which have a .kit suffix. On UNIX, Starkits use the #!
header to associate themselves with tclkit. Make sure that tclkit is in a directory
named in your PATH environment variable. On Windows, you can associate tcl-
kit.exe with the .kit extension. Mac OS X behaves like UNIX (yay!). On Mac
Classic systems you can use the File Source menu to source .kit files. Creating
Starkits is described on page 352.

Inside a Starkit

Tclkit uses the Virtual Filesystem extension to make records in a Metakit
database look like files and directories to your application. Through a simple
packaging step described shortly, you can easily put all of the Tcl scripts and
other supporting files that make up your application into a single database file.
The Virtual Filesystem (VFS) extension lets you transparently access these files
through the regular file system interface (e.g., open, gets, source, even cd.)

A Starkit is a Metakit database that stores an application. The great thing
about a Starkit is that it is a single file so it is easy to manage. There is no need
to unpack files or run an installer to set things up. Instead, you can distribute
your application as two files: the Tclkit interpreter and the Starkit file. Both of
these embed a virtual file system that include all the bits and pieces needed for
Tcl/Tk and your application. The Tclkit file is platform-specific because it con-
tains Tcl and all the other extensions in a compiled form. There are pre-compiled
Tclkits for Windows, Macintosh, and many flavors of Unix. The Starkit file is
platform-independent. You can use it with the appropriate Tclkit interpreter on
different platforms.

Deploying Applications as Starkits

The key benefit of Tclkit and Starkits is easy deployment. Users just copy
tclkit and your Starkits onto their system; there is no special installation step.
You can even have different versions of tclkit and they don’t interfere with each
other. If users get tired of your application, they just remove the files.

Virtual File Systems 351
II. A

d
va

nc
e

d
 Tc

l

Creating Starkits is made easy with the sdx application, which was created
by Steve Landers and Jean-Claude Wippler. You organize your collection of
application scripts, data files, binary graphics, and online documentation into a
file system directory structure. Then you use sdx to wrap that into a Starkit.
Creating your own Starkits is described on page 352.

You can include binary extensions in a Starkit and dynamically load them.
The load command automatically copies the shared library out of the VFS to a
temporary location, and loads the library from that location. The temporary file
is necessary because the host OS cannot find the library inside the Starkit.
Binary extensions make the Starkit platform-specific, but it is possible to put
libraries for different platforms into the Starkit. For example, the kitten.kit
Starkit includes extensions for Windows, Linux, and Solaris.

You can combine Tclkit and a Starkit into a Starpack. The advantage of
this is that it reduces deployment to a single file. The main drawback is that the
Starpack file is relatively large, and it is platform-specific. Use sdx to create
Starpacks as described later.

The Starkit archive contains a growing collection of Starkits that include
applications, games, development tools, a Wiki, tutorials and documentation
bundles. There is a copy of the archive on the CD-ROM, and its home page is:

http://mini.net/sdarchive/

Virtual File Systems

The key concept in Tclkit and Starkits is the virtual file system (VFS). You may
be familiar with the file system interface inside a Unix operating system that
makes everything look the same (files, tape drives, network sockets, pipes). The
nice thing about Unix is that a system programmer can use the same APIs to
access all of these things. The goal of the Tcl VFS interface is similar in spirit:
use the regular Tcl file system interface to make things like embedded data-
bases, FTP servers, and zip files available to the Tcl programmer. The VFS layer
in Tcl 8.4 is implemented below the Tcl C APIs for file system access (e.g.,
Tcl_CreateChannel, Tcl_FSDeleteFile). The result is that scripting commands
(e.g., open, file, glob) and any C extensions that use these APIs automatically
access any Virtual File Systems that are part of the Starkit.

The virtual file system is mounted on a regular file; by default it is mounted
on the Starkit. For example, if the Starkit is named foo.kit, and its virtual file
system contains a file named main.tcl, then it is visible to the Tcl application as
foo.kit/main.tcl. The VFS can contain a whole directory structure (e.g.,
foo.kit/lib/httpd.tcl or foo.kit/htdocs/help/index.html.)

The next section explores some simple Starkits and their file system struc-
ture. The main idea is that the Starkit file itself is the root of the virtual file sys-
tem hierarchy, and everything in the virtual file system is visible to Tcl via the
regular scripting commands. If the VFS supports it, you can create and write
files as well as read them.

352 Tclkit and Starkits Chap. 22
Tclkit includes the TclVFS extension that exposes the ability to implement
new file systems in Tcl. Ordinarily you do not need to use the vfs API directly
when using a Starkit. However, the TclVFS project has created a number of VFS
implementations that let you access web sites, FTP sites, zip files, tar files, and
more through the filesystem interface. Tclkit does not include all of these, but
you can get them as part of the TclVFS extension. Its home page is

http://sourceforge.net/projects/tclvfs

Accessing a Zip File Through a VFS

Tclkit includes a zipvfs package that lets you mount a compressed ZIP file
archive and read its contents. This is currently limited to read-only access.
Example 22–1 uses the vfs::zip::Mount command to set up the VFS access. If
you use other VFS types supplied by the TclVFS extension, you will find that
each supplies its own vfs::vfs_type::Mount API:

Example 22–1 Accessing a Zip file through a VFS

package require vfs::zip
=> 1.0
Mount the zip file on "xyz"
vfs::zip::Mount c:/downloads/tclhttpd343.zip xyz
=> filecb15a8
Examine the contents
glob xyz/*
=> xyz/tclhttpd3.4.3
Open and read file inside the zip archive
set in [open xyz/tclhttpd3.4.3/README]
=> rechan16
gets $in
This HTTPD is written in Tcl and Tk.

Using sdx to Bundle Applications

Sdx, which stands for Starkit Developer eXtension, is an application that you
run from the Unix, Windows, or MacOS command line to create and manipulate
Starkits. It is itself a Starkit, of course. The sdx application is on the CD-ROM,
and you can find a link to it from the Starkit home page:

http://www.equi4.com/starkit/

Creating a Simple Starkit

Creating a Starkit amounts to creating a directory structure that contains
the files you need, and then wrapping them up with sdx. Create files under kit-
name.vfs, and wrap them into the kitname.kit Starkit with:

sdx wrap kitname.kit

Using sdx to Bundle Applications 353
II. A

d
va

nc
e

d
 Tc

l

In simple cases, sdx will create the directory structure for you. For example,
if you have a self-contained Tcl script called hello.tcl, then you can turn it into
a Starkit like this:

sdx qwrap hello.tcl

The qwrap operation (i.e., "quick wrap") creates a new Starkit, hello.kit,
that includes the original hello.tcl script organized into a virtual file system
hierarchy with some additional support files. You run the Starkit like this:

tclkit hello.kit

On Unix systems you can also execute the Starkit directly. The file uses the
#! syntax to specify that tclkit should run the file. On Windows, you can achieve
the same effect by associating tclkit.exe with files that end in .kit.

Examining a Starkit

There are two ways to look at a Starkit. You can get a listing of the files
with the sdx lsk operation, or you can use sdx unwrap to extract the files from
the Starkit into a kitname.vfs directory. Example 22–2 shows the lsk output for
hello.kit. The dates are in YY/MM/DD format:

Example 22–2 The output of sdx lsk hello.kit.

hello.kit:
 dir lib/
 67 02/11/08 12:07 main.tcl
hello.kit/lib:
 dir app-hello/
hello.kit/lib/app-hello:
 43 02/11/08 12:10 hello.tcl
 72 02/11/08 12:07 pkgIndex.tcl

Standard Package Organization

The qwrap operation turns the hello.tcl script into the app-hello pack-
age. If necessary, sdx adds a package provide app-hello 1.0 command to the
hello.tcl script. It also creates a short main.tcl script that initializes the Star-
kit system and invokes hello.tcl by doing a package require. Example 22–3
shows main.tcl:

Example 22–3 The main program of a Starkit.

package require starkit
starkit::startup
package require app-hello

When you run the Starkit, its Metakit database is mounted into a Virtual
File System that is visible to the Tcl application. Tclkit sources the main.tcl
script it finds in the VFS. The starkit::startup procedure updates the

354 Tclkit and Starkits Chap. 22
auto_path to contain the Starkit’s lib directory, so any packages stored there
are available to the package mechanism. By convention, the application is put
into a package with the name app-kitname. Example 22–4 shows the pkgIn-
dex.tcl, which causes the package require app-hello command to source
hello.tcl.

Example 22–4 The pkgIndex.tcl in a Starkit.

package ifneeded app-hello 1.0 \
[list source [file join $dir hello.tcl]]

The dir variable is set by the package mechanism to be the directory con-
taining the pkgIndex.tcl file. That the lib directory happens to be inside the
virtual file system is completely transparent to the package mechanism. The
package mechanism is described in more detail in Chapter 12.

Creating a Starpack

A Starpack contains a copy of Tclkit and your Starkit. Use sdx to create
Starpacks. The -runtime flag specifies which Tclkit application you want to
merge with your Starkit. For example, to build a Windows Starpack out of our
hello.tcl application:

sdx wrap hello.kit -runtime tclkit-win32.exe

To build a Starkit for Linux, use the appropriate runtime:
sdx wrap hello.kit -runtime tclkit-linux-x86

There are 4 variations of the Windows Tclkit. One option uses zlib to auto-
matically compress Tclkit and the Metakit database. These have .upx in their
name. The other creates a console-mode application that does not include Tk.
These have -sh in their name. The smallest Tclkit, tclkit-win32-sh.upx.exe, is
only 450 K. Even tclkit-win32.upx.exe is only 907 K, so you really can create
complete applications that fit easily onto a floppy disk!

The auto-compress variation is also available on the Linux x86 builds as
the tclkit-linux-x86.upx.bin runtime file. Check the Tclkit home page for the
latest set of Tclkit builds:

http://www.equi4.com/tclkit

Exploring the Virtual File System in a Starkit

Example 22–2 introduces the standard, recommended VFS structure for a Star-
kit that makes everything into a package, even the main application. However,
in this section we are going to show a Starkit without packages in order to get a
feel for how the VFS works. For example, instead of doing the package require
hello, the main.tcl script of Example 22–3 could source the hello.tcl file
directly:

source hello.kit/lib/app-hello/hello.tcl

Exploring the Virtual File System in a Starkit 355
II. A

d
va

nc
e

d
 Tc

l

However, this only works if you are in the directory containing the
hello.kit file.

Use starkit::topdir to find things in the Starkit Virtual File System.
The starkit::topdir variable is set by starkit::startup to be the file

name of the Starkit, which is also the root of the Virtual File System inside the
Starkit. The value of starkit::topdir is an absolute pathname, so it is always
valid. Example 22–5 shows a Starkit that manipulates its virtual file system.

Example 22–5 A Starkit that examines its Virtual File System.

package require starkit
starkit::startup

puts "Contents of VFS before"
foreach f [glob [file join $starkit::topdir *]] {

puts "[file size $f] $f"
}
puts "Reading data file"
set in [open [file join starkit::topdir data]]
set X [read $in]
puts $X
close $in
set out [open [file join $starkit::topdir data.new w]]
puts $out $X
close $out
puts "Contents of VFS after"
foreach f [glob [file join $starkit::topdir *]] {

puts "[file size $f] $f"
}

Create the Starkit by putting the code in Example 22–5 into a file named
main.tcl in the write.vfs directory. Then use sdx as shown in Example 22–6:

Example 22–6 Creating a simple Starkit.

These are UNIX shell commands
mkdir write.vfs
cp 22_5.tcl write.vfs/main.tcl
sdx wrap write.kit
tclkit write.kit

If you run the write.kit file more than once you will notice that the
write.kit/data.new file does not persist between runs. This is because, by
default, the Metakit database is modified in main memory and it is not written
out to the Starkit file. If you want to store files long term, use the -writable flag
to sdx:

sdx wrap write.kit -writable

356 Tclkit and Starkits Chap. 22
Creating tclhttpd.kit
The Tcl Web Server, TclHttpd, has its source tree organized so you can run the
server without any installation steps. This makes it very easy to put into a Star-
kit. For our first version, which we will refine later, all we need is a copy of the
TclHttpd source code and a copy of the Standard Tcl Library, tcllib. I used the
tcllib1.3 directory that was installed in the main lib directory of my desktop
Tcl environment, and the tclhttpd3.4.3 source distribution. Example 22–7
shows the contents of the tclhttpd.vfs directory:

Example 22–7 The contents of the tclhttpd.vfs directory, version 1.

main.tcl
tclhttpd3.4.3/bin/httpd.tcl
tclhttpd3.4.3/bin/httpdthread.tcl
tclhttpd3.4.3/bin/tclhttpd.rc
tclhttpd3.4.3/lib/ (lots of files)
tclhttpd3.4.3/htdocs/ (lots of files)
tcllib1.3 (copy of /usr/local/lib/tclib1.3)

Example 22–8 shows the short main.tcl script used to start up the Starkit.
The first two lines are common to all Starkits. The starkit::autoextend com-
mand is used to add the tcllib1.3 directory to the auto_path so the Standard
Tcl Library packages are available. The last line uses starkit::topdir to find
the TclHttpd startup script, bin/httpd.tcl.

Example 22–8 The main program for the TclHttpd Starkit, version 1.

package require starkit
starkit::startup
starkit::autoextend [file join $starkit::topdir tcllib1.3]
source [file join $starkit::topdir tclhttpd3.4.3/bin/httpd.tcl]

The Starkit is created and used as shown below, assuming tclhttpd.vfs is
in the current directory. Note that command line options are passed through, so
you can also use this Starkit to host an htdocs directory outside the Starkit. If
you don’t specify one, the htdocs tree inside the Starkit is used:

sdx wrap tclhttpd.kit
tclkit tclhttpd.kit -port 8080 -docRoot /my/htdocs

The standard structure introduced in Example 22–2 organizes packages
under a lib directory. By convention, the version numbers are dropped from the
package directory names. Because everything is self contained, there really isn’t
any need to have explicit version numbers in the directory names. The file sys-
tem for the second version of tclhttpd.kit is shown in Example 22–9.

Creating a Shared Starkit 357
II. A

d
va

nc
e

d
 Tc

l

Example 22–9 Contents of the tclhttpd.vfs directory, version 2.

main.tcl
bin/httpd.tcl
bin/httpdthread.tcl
bin/tclhttpd.rc
lib/tclhttpd/pkgIndex.tcl
lib/tclhttpd/*.tcl (lots of files)
lib/tcllib/pkgIndex.tcl
lib/tcllib/* (lots of subdirectories)

The main.tcl file is shown in Example 22–10. There is no need to adjust
the auto_path because starkit::startup ensures that the lib directory is on it.

Example 22–10 The main program for the TclHttpd Starkit, version 2.

package require starkit
starkit::startup
source [file join $starkit::topdir bin/httpd.tcl]

One of the first things I noticed about the tclhttpd.vfs was that tcllib took
up far more space than the rest of TclHttpd. TclHttpd only uses a few of the
many modules in tcllib. I ended up only adding the modules I needed in order to
keep the Starkit smaller. Another way to solve this problem is to use the
tcllib.kit Starkit that can be shared among applications. Creating shared
Starkits is the topic of the next section.

Creating a Shared Starkit
Starkits can be used to create modules that are shared by other applications. For
example, the kitten.kit Starkit contains about 50 popular extensions, and sev-
eral of them are binary extensions. It is over 4 MB in size, and so it is a great
candidate for sharing. You can find kitten.kit on the CD-ROM or in the Starkit
archive. By organizing each shared module into a Starkit with the appropriate
structure, it is a simple matter to share them.

Whenever a Starkit is sourced, Tclkit mounts its VFS and looks for its
main.tcl file. This is true for shared Starkits as well as the main Starkit of an
application. If main.tcl calls starkit::startup, then the lib directory in the
VFS is automatically added to the auto_path. Any libraries organized under lib
will be automatically accessible to the application that sourced the Starkit.

You can add a little logic to make your package behave differently if it is
run as the main Starkit or sourced into another application. For example, this is
done in the tcllib Starkit, which starts a stand-alone Wiki that describes the
Standard Tcl Library APIs if run as its own Starkit. Otherwise it just sets up
tcllib to be shared by the main application. Example 22–11 shows the main.tcl
of tcllib.kit. It has to explicitly add the tcllib directory to the auto_path
because it has both a lib and tcllib directory in its VFS:

358 Tclkit and Starkits Chap. 22
Example 22–11 The Standard Tcl Library Starkit main.tcl file.

package require starkit
if {[starkit::startup] eq "starkit"} {

Do application startup
package require app-tcllib

} else {
Set up to be used as a library
set vfsroot [file dirname [file normalize [info script]]]
lappend auto_path [file join $vfsroot tcllib]

}

Another side effect of starkit::startup is to set starkit::topdir. How-
ever, this variable is only set once. If you source other Starkits that call star-
kit::startup, then the starkit::topdir value is not disturbed.

This behavior changed in Tclkit 8.4.2. In earlier versions, starkit::topdir
was set by each Starkit, so you had to worry about saving its value if you loaded
other Starkits. If you source tcllib.kit and cannot package require its pack-
ages, check its main.tcl. If it uses starkit::topdir in the non-Starkit case,
then it is an older version. Simply unwrap it, make its main.tcl look like Exam-
ple 22–11, and wrap it back up to fix the problem.

The starkit::startup procedure determines the environment of the appli-
cation by making a series of tests against the script environment. Its return
value helps your main.tcl script distinguish between starting out as the main
Starkit, or being loaded into another Starkit as a library. Table 22–1 lists the
return values of the starkit::startup procedure in the order they are checked:

The easiest way to organize your shared Starkits is to put them into the
same directory. Example 22–12 shows how the TclHttpd Starkit is modified to
load the tcllib Starkit from the same directory.

Table 22–1 Return values of the starkit::startup procedure.

starpack The Starkit was bundled with tclkit to make a Starpack.

starkit The Starkit was run by itself.

unwrapped The Starkit was run out of its unpacked vfs directory.

tclhttpd The Starkit was sourced into TclHttpd.

plugin The Starkit was sourced in the browser plugin.

service The Starkit was run in an NT service.

sourced The Starkit was sourced by another Starkit.

Metakit 359
II. A

d
va

nc
e

d
 Tc

l

Example 22–12 The main program for TclHttpd Starkit, version 3.

package require starkit
starkit::startup
set dir [file dirname $starkit::topdir]
if {![file exists [file join $dir tcllib.kit]]} {

puts stderr "Please install tcllib.kit in $dir"
exit 1

}
source [file join $dir tcllib.kit]
source [file join $starkit::topdir tclhttpd/bin/httpd.tcl]

Metakit

This section provides a short overview of the Metakit database that is used by
Starkits to store their data. You do not need to program Metakit directly to use
Starkits because of the transparent VFS interface. However, Metakit is an easy-
to-use database that provides more power than storing data in flat files, but not
as much power (or overhead) as a full SQL database engine. Metakit has a sim-
ple, flexible programming API and an efficient implementation. By storing your
application data in a Metakit table, you can have persistent data that lives with
your application. You can store the data in a file separate from your application,
or right inside the application Starkit itself.

This Chapter gives a few introductory examples and explains some of the
other features that are available. This Chapter does not provide a complete ref-
erence. The following URLs are excellent guides to the Tcl interface for Metakit.
The first URL is also on the CD as sdarchive/doc/mk4dok.kit.

http://www.equi4.com/metakit/tcl.html
http://www.equi4.com/metakit/wiki.cgi/mk4tcl
http://www.markroseman.com/tcl/mktcl.html

Metakit Data Model

The Metakit data model is table-oriented. A view is like a table with rows of
values. Each row in a view has an index, which is an integer that counts from 0.
The elements (i.e., columns or fields) of a row are called properties. A property
might itself be a view, which leads to nested views (i.e., nested tables). All the
rows in a view have the same properties, and the properties of a view can be
changed dynamically. You can directly relate (view, row, property) to (table, row,
field) when thinking about Metakit views.

A Metakit data file has one or more views within it. When you open a Meta-
kit file, you specify a tag. Views are specified as tag.view. Row N of a view is
specified as tag.view!N. Such a position within a view is called a cursor, and
there are operations to create cursor variables and move them through a view. If
a property is a nested view, then you can specify a row in the nested view with
tag.view!N.subview!M.

360 Tclkit and Starkits Chap. 22
Examining a Metakit Database

Our first exercise is to open up a Starkit and look at the Metakit database
views inside. The mk::file command implements several operations. The open
operation opens a database and associates it with a tag. The views operation
lists the views in the database identified by the tag. The close operation com-
mits any outstanding modifications to the database. The other mk::file opera-
tions are used to control the commit behavior and to save or restore the database
to an external file. Example 22–13 illustrates how to open a Metakit database
and examine the views it contains:

Example 22–13 Examining the views in a Metakit database.

package require Mk4tcl
=> 2.4.8
mk::file open tclhttpd tclhttpd.kit
=> tclhttpd
mk::file views tclhttpd
=> dirs

The mk::view command has several operations to inspect and manipulate
views. The layout operation queries or sets the properties of a view. Given only a
view, the layout operation returns the properties defined for the view. Each
property has a type, and nested views are represented as a nested list of the
property name and its list of properties. Given a set of properties, the layout
operation defines new properties for a view. This may involve adding or deleting
properties from any existing rows in the table. Example 22–14 shows the layout
of the dirs view in a Starkit. The files property is a nested view, which provides
a natural way to represent a hierarchical filesystem. The example gets the name
property of tclhttpd.dirs!0.files!0, which is the first file in the first directory
in the view:

Example 22–14 Examining data in a Metakit view.

mk::view layout tclhttpd.dirs
=> name parent:I {files {name size:I date:I contents:B}}
mk::view size tclhttpd.dirs
=> 48
mk::get tclhttpd.dirs!0
=> name <root> parent -1
mk::get tclhttpd.dirs!1
=> name tcllib1.3 parent 0
mk::get tclhttpd.dirs!1 name
=> tcllib1.3
mk::get tclhttpd.dirs!0.files!0 name
=> main.tcl

Of course, real applications will want to query views for values that have
certain properties. The mk::select command returns the row numbers for rows

Metakit 361
II. A

d
va

nc
e

d
 Tc

l

that match given criteria, or all the row numbers if no matching criteria are
given. You can match on multiple properties, and there are flags that control
how the match is done. For example, you can do numeric comparisons, regular
expression or glob matches, and min/max comparisons.

Example 22–15 shows two forms of mk::select. The KitWalk procedure
enumerates the files in a given directory, which is the view
$tag.dirs!$dir.files. Then it queries the row indices for the $tag.dirs view
whose parent property equals $dir, and calls itself recursively to process the
child directories. KitWalk provides a similar function to sdx lsk:

Example 22–15 Selecting data with mk::select.

proc KitWalk {tag dir {indent 0}} {
set prefix [string repeat " " $indent]
puts "$prefix[mk::get $tag.dirs!$dir name]/"
incr indent 2

List the plain files in the directory, if any

foreach j [mk::select $tag.dirs!$dir.files] {
puts "$prefix [mk::get $tag.dirs!$dir.files!$j name]"

}

Recursively process directories where $dir is the parent

foreach i [mk::select $tag.dirs parent $dir] {
KitWalk $tag $i $indent

}
}
proc KitInit {starkit} {

mk::file open starkit $starkit
if {[mk::file views starkit] != "dirs"} {

mk::file close $starkit
error "This database is not a starkit"

}
return starkit ;# db tag

}
proc KitTest {} {

set tag [KitInit tclhttpd.kit]
KitWalk $tag 0

}

Creating a Metakit View

Creating a new view is simple. Example 22–16 opens a database file
mydb.tkd and creates a view test with three properties: name, blob, and i. If the
file does not exist, then it gets created automatically. If the test view doesn’t
exist, it gets created. If it already exists, it is reformatted to have the new prop-
erties. The name property has the default type, which is a null-terminated string.
The blob property is a binary value (B) which can store anything, including null

362 Tclkit and Starkits Chap. 22
characters. The i property is a 32-bit integer (I). Other types include 64-bit inte-
ger (L), 32-bit floating point (F), 64-bit double-precision floating point (D), and
null-terminated string (S), which is the default and needn’t be specified.

Example 22–16 Creating a new view.

mk::file open mydb mydb.tkd
=> mydb
mk::view layout mydb.test {name blob:B i:I}
=> mydb.test
mk::file close mydb

The mk::set command sets property values, and the mk::row command
modifies rows. Example 22–17 adds a few values to the test view. Note that you
can insert into rows beyond the end of the view and it is automatically extended.
If you only define some properties for a row, the other properties get default val-
ues. Other mk::row operations include insert, replace, and delete.

Example 22–17 Adding data to a view.

mk::set mydb.test!0 name hello
=> mydb.test!0
mk::get mydb.test!0
=> hello {} 0
mk::row append mydb.test "line two" 0x0 65
=> mydb.test!1
mk::view size mydb.test
=> 2
mk::set mydb.test!100 i 1234
=> mydb.test!100
mk::view size mydb.test
=> 101

Storing Application Data in a Starkit

Your application can create new views in a Starkit to store persistent data.
Remember to wrap your application with the -writable flag. You can determine
the name of the Starkit from $starkit::topdir, and then define a new view
within it. Of course, remember that Starkits use dirs view to store files, but you
can create any number of other views within your Starkits. This is illustrated in
Example 22–18, which records each time the application was run in a simple
audit view.

Example 22–18 is careful to find the existing Metakit handle that is already
opened by Tclkit. The vfs::filesystem info command returns an alternating
list of VFS names and their Metakit database handle. The example extracts the
handle and saves it in the $db variable. This is important because opening the
same Metakit file twice (for writing) can cause corruption:

More Ideas 363
II. A

d
va

nc
e

d
 Tc

l

Example 22–18 Storing data in a Starkit.

package require starkit
starkit::startup
set db [lindex [vfs::filesystem info [$starkit::topdir]] 1]
mk::view layout $db.audit {action timestamp:I}
mk::row append $db.audit "Run as pid [pid]" [clock seconds]
puts "$argv0 has been run [mk::view size $db.audit] times"

To test this, put this example into the main.tcl of a trivial Starkit. When
you create the Starkit, remember the -writable option with sdx:

mkdir bundle.vfs
cp 22_18.tcl bundle.vfs/main.tcl
sdx wrap bundle.kit -writable-

Wikit and the Tcler’s Wiki

The alternative to storing data in the Starkit file is to have a separate
Metakit data file. This is the approach taken by Wikit. The wikit.kit file is the
Wikit application, and the wikit.tkd file is a Metakit database file that stores
all the pages in the Wiki. (Creating a new Wiki is simple, just specify a different
.tkd file name.) The advantage of having a separate Metakit file is that you can
easily maintain your application by unwrapping and wrapping your application
Starkit. Otherwise, if you put the application data directly into the Starkit you
have to extract it and restore it as an additional maintenance step. In that case,
you must use the mk::file save and load operations to save and restore your
Metakit views to a file.

A Wiki is a web site that users can easily edit using a simplified markup
syntax. Wikit is a Wiki implementation in Tcl using Metakit to store pages. It
can run as a stand-alone Tk application, a GGI script, as its own little web
server, or embedded into another application as a documentation bundle. There
is a copy of wikit.tkd on the CD-ROM. For example, you run a stand alone copy
of the Tcler’s Wiki as:

tclkit wikit.kit wikit.tkd

The live Wiki is at wiki.tcl.tk*, and you can find out more about Wikit at:
http://wiki.tcl.tk/wikit

More Ideas

This Chapter has provided a brief introduction to Tclkit, Starkits, and Metakit.
This should be enough to help you get started creating your own Starkits and
using Metakit for persistent storage. You should consult the documentation on
the Web for more detailed reference material.

* http://wiki.tcl.tk is an alias for http://mini.net/tcl.

364 Tclkit and Starkits Chap. 22
Document Bundles

The Starkit archive includes a number of documentation bundles. For
example, mk4dok.kit is a Starkit that contains all the MetaKit documentation.
These document bundles are all based on Wikit. It is very easy to create Wiki-
style documentation for your application and then bundle it up as a Metakit file.
You can load wikit.kit and your .tkd document bundle into your application
and use the "local" Wikit interface to display your documentation. For example,
the critcl Starkit displays its help with this simple command:

Wikit::init [file join $::starkit::topdir doc critcl.tkd]

Self-Updating Applications

The client in a client-server application is an ideal candidate for a self-
updating application. The front-end client is a Starkit with some simple startup
logic that connects to a server via HTTP and displays a pretty splash screen. The
server, which is often based on TclHttpd, delivers code updates to the client. The
client caches the code in the VFS inside the Starkit. The application is main-
tained on the server, and clients automatically get updated as they are used.

This scenario has the same deployment advantage as browser-based appli-
cations: you deploy a "thin-client" to desktops that rarely, if ever, changes and
you update the application code on the server. In addition, this application struc-
ture lets you create a nice client front-end that uses Tcl/Tk instead of HTML, yet
still have the benefit of an easy to manage server-side installation of the applica-
tion code. This design pattern is being used for a number of large-scale commer-
cial application deployments with considerable success.

A similar system is used with the Starkit archive. If you do:
sdx update tclhttpd.kit

The sdx application contacts the web server running the archive and checks
for any updates available for the Starkit. Only the differences are transmitted,
so updates are quick, and they are automatically applied to your copy of the Star-
kit. This should work for all the Starkits in the snapshot of the archive on the
CD-ROM.

Simple Installers

In some cases you simply must install a collection of files as part of your
application. It is very easy to include those files in the VFS, and then extract
them into the local file system the first time your application runs. Or, you can
create a traditional "installer" that unpacks the entire application from the Star-
kit (or Starpack).

	22
	Tclkit and Starkits
	Tclkit was created by Jean-Claude Wippler as a way to make deploying Tcl applications easier. Tclkit is an extended Tcl interpre...
	Getting Started with Tclkit
	Inside a Starkit
	Deploying Applications as Starkits

	Virtual File Systems
	Accessing a Zip File Through a VFS
	Example 22-1 Accessing a Zip file through a VFS

	Using sdx to Bundle Applications
	Creating a Simple Starkit
	Examining a Starkit
	Example 22-2 The output of sdx lsk hello.kit.

	Standard Package Organization
	Example 22-3 The main program of a Starkit.
	Example 22-4 The pkgIndex.tcl in a Starkit.

	Creating a Starpack

	Exploring the Virtual File System in a Starkit
	Example 22-5 A Starkit that examines its Virtual File System.
	Example 22-6 Creating a simple Starkit.

	Creating tclhttpd.kit
	Example 22-7 The contents of the tclhttpd.vfs directory, version 1.
	Example 22-8 The main program for the TclHttpd Starkit, version 1.
	Example 22-9 Contents of the tclhttpd.vfs directory, version 2.
	Example 22-10 The main program for the TclHttpd Starkit, version 2.

	Creating a Shared Starkit
	Example 22-11 The Standard Tcl Library Starkit main.tcl file.
	Table 22-1 Return values of the starkit::startup procedure.

	Example 22-12 The main program for TclHttpd Starkit, version 3.

	Metakit
	Metakit Data Model
	Examining a Metakit Database
	Example 22-13 Examining the views in a Metakit database.
	Example 22-14 Examining data in a Metakit view.
	Example 22-15 Selecting data with mk::select.

	Creating a Metakit View
	Example 22-16 Creating a new view.
	Example 22-17 Adding data to a view.

	Storing Application Data in a Starkit
	Example 22-18 Storing data in a Starkit.

	Wikit and the Tcler’s Wiki

	More Ideas
	Document Bundles
	Self-Updating Applications
	Simple Installers

