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CHAPTER 1

Introduction
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This dissertation concerns network computing environments. Advances in network
and microprocessor technology have caused a shift from stand-alone timesharing systems
to networks of powerful personal computers. Operating systems designed for stand-alone
timesharing hosts do not adapt easily to a distributed environment. Resources like disk
storage, printers, and tape drives are not concentrated at a single point. Instead, they are
scattered around the network under the control of different hosts. New operating system
mechanisms are needed to handle this sort of distribution so that users and application
programs need not worry about the distributed nature of the underlying system.

This dissertation explores the approach of centering a distributed computing
environment around a shared network file system. The file system is chosen as a starting
point because it is a heavily used service in stand-alone systems, and the read/write para-
digm of the file system is a familiar one that can be applied to many system resources.
The file system described in this dissertation provides a distributed name space for sys-
tem resources, and it provides remote access facilities so all resources are available
throughout the network. Resources accessible via the file system include disk storage,
other types of peripheral devices, and user-implemented service applications. The result-
ing system is one where resources are named and accessed via the shared file system, and
the underlying distribution of the system among a collection of hosts is not important to
users. A ‘‘single system image’’ is provided where any host is equally usable as another,
much like a timesharing system where all the terminals provide equivalent access to the
central host.

The file system makes a basic distinction between operations on the file system
name space and operations on open I/O streams. The name space is implemented by a
collection of file servers, while I/O streams may be connected to objects located on any
host. Thus, two different servers may be involved in access to any given object, one for
naming the object and one for doing I/O on the object. This creates a flexible system
where devices and services can be located on any host, yet the file servers’ directory
structures still make up the global name space. At the same time, a file server handles
both naming and I/O operations for regular files in order to optimize this important com-
mon case. The distinction between naming and I/O has been made in other systems by
introducing a separate network name service. However, the name services in other sys-
tems have been too heavy weight to use for every file. Name services have been used to
name hosts, users, and services instead. In contrast, the work here extends the file system
name space to provide access to other services. This achieves the same flexibility pro-
vided by a separate name service, but it reuses the directory lookup mechanisms already
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present on the file servers and it optimizes the important case of regular file access.

Another novel feature of the Sprite file system concerns distributed state manage-
ment. The file system is implemented by a distributed set of computers, and its internal
state is distributed among the operating system kernels at the different sites. Much of the
state is used to optimize file system accesses by using a main-memory caching system.
The servers keep state about how their clients are caching files, and they use this state to
guarantee a consistent view of the file system data [Nelson88b]. It is important to main-
tain this state efficiently so the performance gains of caching are not squandered, yet it is
also important to maintain the state robustly so the system behaves well during server
failures and network partitions. The dissertation describes how server state is maintained
efficiently during normal operations and how server state is updated when processes
migrate between hosts. This dissertation also describes a recovery protocol for ‘‘state-
ful’’ servers that relies on redundant state on the clients. The redundant state is main-
tained cheaply as main-memory data structures (there is no disk logging), and servers can
recover their state after a crash with the help of their clients.

The next section of this introductory chapter gives a little background on the Sprite
operating system project. Then the issues addressed by the file system are considered in
more detail, along with the more specific contributions I make regarding these issues.
The chapter ends with an outline of the other chapters and a summary of the thesis.

1.1. The Sprite Operating System Project

The work presented here was done as part of the Sprite operating system project
[Ousterhout88]. The project began in 1984 with the goal of designing and developing an
operating system for a network of personal workstations. We felt that new hardware
features changed our computing environment enough to warrant exploration of new
operating system techniques. The new hardware features include multiprocessors, large
main memories, and networks. Of these, my work mainly concerns the network and the
problems associated with integrating a network of workstations into a single system.

Sprite began as part of the SPUR multiprocessor project [Hill86]. The SPUR
machine is an example of the new technology we felt demanded a new operating system.
It is a multiprocessor with a large physical memory, and it is networked together with
many other powerful personal workstations. While the SPUR machine was being built
by fellow graduate students, our group began development of Sprite on Sun workstations.
Today Sprite runs on Sun3 and Sun4 workstations, DECstations, and, of course, mul-
tiprocessor SPURs.

Our approach to designing and building Sprite was to begin from scratch. Instead
of modifying an existing operating system such as UNIX1, we decided to start fresh so as
to be unfettered by existing design decisions. We were pragmatic, however, and realized
that we did not have the man-power to rewrite all the applications needed to build a
hhhhhhhhhhhhhhhhhhhhhhhhhhh

1 UNIX is a registered trademark of A.T.&T.
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useful system. We decided to implement the operating system kernel from scratch, but
provide enough compatibility with UNIX to be able to easily port UNIX applications.
We wanted to provide a system that was like a stand-alone timesharing system in terms
of ease of use and ease of information sharing, yet provided the additional power of a
network of high-performance personal workstations. Our target was a system that sup-
ported a moderate number of people, perhaps an academic department or a research
laboratory. Furthermore, our system had to efficiently support diskless workstations,
which we favor because they reduce cost, heat, noise, and administrative overhead. Our
goal of building a real system has been met. Sprite is in daily use by a growing number
of people, and it is used to support continued development of Sprite itself.

There are two features of Sprite that dovetail with its shared file system to provide a
high-performance system: a high-performance file caching system, and process migra-
tion. The caching system keeps frequently accessed data close to the processes that use
them, while the migration system lets processes move to idle workstations. (These
features are described briefly below.) Furthermore, the stand-alone, ‘‘timesharing’’
semantics of the file system are maintained so that the additional performance provided
by these features does not impact the ease of use of the system.

Sprite uses main-memory caches of file data to optimize file access. The caches
improve performance by eliminating disk and network accesses; data is written and read
to and from the cache, if possible. Furthermore, a delayed-write policy is used so that
data can age in the cache before being written back. In a distributed system this caching
strategy creates a consistency problem. Data may be cached at many sites, and the most
recent version of a file may not be in the local cache. The algorithm used to maintain
cache consistency and the performance benefits of the caching system have been
described in Nelson’s thesis [Nelson88b] and [Nelson88a]. The caching system is
relevant to this thesis because it creates a state management problem. The state that sup-
ports caching has to be managed efficiently so as not to degrade the performance gained
by caching, yet it has to be managed robustly in the face of server crashes.

Sprite provides the ability to migrate actively executing processes between hosts of
identical CPU architecture. This feature is used to exploit the idle processors that are
commonly found in a network of personal workstations; migration is used to off-load
jobs onto idle hosts. The process migration system will be described in Douglis’s thesis
[Douglis90], while this dissertation describes the effect that process migration has on the
file system. The shared file system makes process migration easier because data files,
programs, and devices are accessible at a migrating process’s new site. However, the
state that supports caching and remote I/O streams has to be updated during migration,
and this is a tricky problem in distributed state management. Thus, the combination of
data caching and process migration pose new problems in state management that I
address in this dissertation.

1.2. Thesis Overview

This dissertation makes original contributions in the areas of distributed naming,
remote device access, user-level extensions, process migration, and failure recovery. A
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software architecture that supports these different features in a well-structured way is
also a contribution of this work. Additionally, I present a follow-on study of Sprite’s
caching system that describes our experiences with it as Sprite has grown into a system
that supports real users. These topics are discussed in the following sub-sections.

1.2.1. The Shared File System

The Sprite distributed file system provides a basic framework through which many
different kinds of resources (files, devices, and services) are accessed. This is in contrast
with other distributed systems where a separate name service is used to locate file
servers, device servers, and other service-like applications [Wilkes80] [Birrell82]
[Terry85]. In Sprite, the file servers play the role of the name servers in the system.
They provide names for devices and services that can be located on any host in the net-
work. The advantage of this approach is that the naming, synchronization, and commun-
ication infrastructure required to support remote file access can be reused to provide
access to remote devices and remote services. For example, the Sprite file system
includes completely general remote waiting and synchronization primitives; the select
call can be used to wait on any combination of files, devices, and services that are located
throughout the network. At the same time, Sprite optimizes access to regular files
because only a single server (the file server) is involved; the overhead of invoking a
separate name service is eliminated.

The internal file system architecture makes a fundamental distinction between nam-
ing operations and I/O operations. Naming operations are performed in a uniform way
for all file system objects by the file servers, and I/O operations are object-specific and
they may be implemented by any host. Thus, there are three roles that a host can play in
the architecture, the file server that does naming operations, the I/O server that imple-
ments object-specific operations, and the client that is using the object. The architecture
supports this by defining two main internal interfaces, one for naming operations and one
for I/O operations. Different implementations of these interfaces cleanly support the dif-
ferent cases that the system has to address. A diskless workstation, for example, names
local devices via a remote file server, but it implements I/O operations on the device
itself. While other file system architectures define generic internal interfaces [Klei-
man86] [Rodriguez86], they are oriented towards file access and have limitations that
preclude the general remote device and remote service access provide by Sprite.

I developed a distributed name resolution protocol that unifies the directory struc-
tures of a collection of file servers into a uniformly shared, global name space. Clients
keep a prefix table that is a mapping from file name prefixes to their servers. The prefix
tables are caches that are updated with broadcast protocol; new entries are added as a
client accesses new areas of the file system, and out-of-date entries are refreshed
automatically if the system configuration changes. This naming system is more dynamic
than the static configurations used in most UNIX-based systems, and therefore it is easier
to manage. The shared name space and its adaptive nature makes it easy to add servers,
move files between servers, and add new disk storage. The naming system is optimized
towards the local area network environment. It uses a light-weight caching- and
broadcast-based system instead of the heavier-weight replicated databases used for larger
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scale name services [Birrell82][Popek85] [Kazar89].

1.2.2. Distributed State Management

The Sprite file system is a tightly-coupled distributed system of servers and clients.
The servers are ‘‘stateful’’; they keep state about how their resources are being used by
other hosts. The motivation for the state is to preserve the semantics of a stand-alone
system where the file system is implemented in a single operating system kernel. For
example, the Sprite caching system provides high-performance access to remote data, yet
it is transparent to application programs because the file servers can guarantee a con-
sistent view of the file system by keeping state about how remote clients are caching
data. This dissertation makes two contributions regarding the management of this state.
The first concerns updating the state during process migration, and the second concerns
maintaining the state across server failures.

Process migration causes two problems that have to be solved. The first problem is
to simply update the file system’s state to reflect the migration of a process. This prob-
lem is complicated by the concurrency present in the system. Different processes can
share I/O streams and perform different operations on them concurrently. I present a
deadlock-free algorithm to update the file system’s distributed state during migration.
Process migration also causes a problem with shared I/O streams. Processes that share an
I/O stream also share the current access position of the stream which is maintained by the
kernel. When migration causes processes on different hosts to share a stream then it is no
longer possible to maintain the current access position in a single shared kernel data
structure. I describe a system based on shadow stream descriptors kept on the file
servers that is simpler than the token-passing schemes used in other systems.

The other contribution I make regarding distributed state management concerns
maintaining the state during server failures and network partitions. I developed a new
state recovery protocol based on the principal of keeping redundant state on the clients
and servers. The state is kept in main memory data structures so it is cheap to maintain
during normal operation. This is in contrast to other recovery systems that are based on
logging state to stable storage. In Sprite, the redundant state allows the servers to rebuild
their state with the help of their clients. This approach also makes the system robust to
diabolical failure modes that arise during network partitions. The recovery protocol is
idempotent so it can be invoked by clients any time they suspect that the system’s state
has become inconsistent due to a communication failure. Common cases like server
reboots are handled invisibly to applications, and diabolical failure modes are detected
and conflicting recovery actions are prevented. The recovery system also gives users the
option of aborting jobs that access dead servers instead of waiting until the server is
rebooted.

Finally, I present a follow-on study that examines the behavior of the caching sys-
tem on our live Sprite network. The caching system is the main cause of the state
management problem, so its performance benefits ought to be significant in order to jus-
tify the additional complexity of the system. Data presented in Chapter 8 indicates that
about 50% of file data is never written back to the Sprite file servers because it is
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overwritten or deleted before the 30-second aging period expires. Read hit ratios on the
client caches are from 30% to 85%, averaging 75% across all clients. However, paging
traffic on clients with small memories can dominate traffic from file cache misses. The
variable-sized caches occupy over 50% of the file server’s main memory, and from 15%
to 35% of the clients main memory. However, the read hit ratios on the servers are
reduced because the clients’ caches are so effective. The server has to have an order of
magnitude more memory than the clients before its cache becomes as effective as the
clients’.

1.2.3. Pseudo-Devices and Pseudo-File-Systems

The third main area that is addressed in this dissertation concerns the extensibility
of the system. Sprite provides mechanisms that allow system services to be implemented
by non-privileged, or ‘‘user-level’’, server processes. While performance-critical ser-
vices are implemented within the Sprite kernel, user-level services provide a way to
easily add functionality to Sprite. The user-level services are implemented as application
programs using the standard development and debugging environment. The motivation
for user-level implementation is to avoid uncontrolled growth of the operating system
kernel as new features are added to the system over time. Keeping the kernel small
means it is more likely to remain stable and reliable. While other systems such as Mach
[Accetta86] and the V system [Cheriton84] support user-level services, the approach
taken in Sprite is novel because the user-level services are integrated into the distributed
file system. The user-level services in Sprite benefit from kernel-resident features such
as the distributed name space and remote access facilities, which are present to support
remote file and device access.

The server processes appear in the file system as pseudo-devices[Welch88].
Pseudo-devices have names in the file system, but I/O operations on a pseudo-device are
forwarded by the kernel up to a user-level server process. Access to remote pseudo-
device servers is handled by the kernel mechanisms that support remote file and device
access. The pseudo-device mechanism replaces the socket operations provided in UNIX,
plus it moves the protocol processing out of the kernel. Pseudo-devices are used to
implement an Internet Protocol server and an X window server for Sprite. A user-level
server process can also implement a pseudo-file-system by handling naming as well as
I/O operations. Sprite uses a pseudo-file-system to provide access to NFS2 file servers.
The NFS directory structures are transparently integrated into the distributed file system
via the pseudo-file-system mechanism. More interesting applications for pseudo-file-
systems are possible. A version control system can be implemented as a pseudo-file-
system that automatically manages different versions of files. Or, an archive service can
be implemented as a pseudo-file-system that presents a directory structure that reflects
the time a file was archived. Pseudo-devices and pseudo-file-systems retain the standard
file system interface, yet they allow extensions to the system to be implemented outside
hhhhhhhhhhhhhhhhhhhhhhhhhhh

2 NFS is a trademark of Sun Microsystems.
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the kernel.

An important lesson to learn from user-level services is that there is a significant
performance penalty in comparison with kernel-based services. Performance studies of
the Sprite mechanisms indicate that the penalty can range from 25% to 100% or more.
The reduced performance is due to unavoidable costs associated with switching between
user processes as opposed to merely trapping into the kernel. Consequently, there is a
fundamental trade-off between having a higher-performance service (and a bigger kernel)
and having a service that is easier to develop and debug. While other systems take one
approach or the other (kernel-based services or user-level services), in Sprite both options
are available. The heavily used services, such as regular file access, are kernel-resident
in Sprite, while user-level services are used for less performance-critical services such as
remote login, mail transfer, and newly developed services. Moving a pseudo-device
implementation into the kernel is not automated, but it is quite feasible because it shares
the file system’s main internal interface.

1.3. Chapter Map

The remaining chapters are organized as follows. Chapter 2 provides background
information and describes related work in file systems and distributed systems. Chapter
3 describes the basic architecture of the file system, focusing on the distinction between
naming and I/O and on the remote synchronization primatives. The remaining chapters
consider individual problems in more detail.

Chapter 4 describes the distributed naming mechanism, which is based on prefix
tables and remote links [Welch86b]. The key properties of the system are that it supports
diskless workstations, it merges the directory hierarchies of Sprite file servers and
pseudo-file-system servers into a seamless hierarchy, and it dynamically adapts to
changes in the file system configuration.

Chapter 5 describes the impact that process migration has on the file system. The
state maintained by the file servers to support caching has to be updated during migra-
tion. This is complicated by concurrency that results from shared I/O streams. The
semantics of shared I/O streams also have to be preserved when the processes sharing the
stream are on different hosts. This is done via shadow stream descriptors that are kept on
the I/O server.

Chapter 6 describes the way the system’s state is organized to be fault-tolerant.
Some of the servers’ state is duplicated on the clients in order to facilitate crash recovery
via an idempotent re-open protocol. This chapter also describes the low-level crash
detection system and shows that it adds little overhead to the system.

Chapter 7 describes the pseudo-device and pseudo-file-system mechanisms. A
‘‘request-response’’ protocol is used to forward operations from the kernel up to the
user-level server. The protocol provides read-ahead buffering and asynchronous writing
to reduce the number of interactions with the server. Even without buffering the
pseudo-device connection is about as cheap as pipes, and much faster than a UNIX TCP
connection in the remote case.
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Chapter 8 reviews the caching system and provides measurements of its perfor-
mance on our network. The performance is of interest in itself, and it also motivates the
distributed state management problem described in the previous chapters.

The final chapter provides some conclusions and a review of the thesis. There are 4
appendices. Appendix A is a short retrospective of the Sprite project. Appendix B
presents some additional measurements that are too detailed to be included in the other
chapters. Appendix C describes the Sprite RPC protocol. Appendix D describes the
RPC interface to Sprite.

1.4. Conclusion

There are three main themes to the thesis. The first theme is transparency with
regard to the network. A distributed system is only a hindrance unless the operating sys-
tem takes measures to manage the distribution on behalf of its users and applications.
This idea of network transparency has been promoted in other systems, most notably
LOCUS [Popek85]. Like LOCUS, Sprite file system operations apply uniformly whether
they are implemented locally or by a remote server. LOCUS is oriented towards a sys-
tem of a few timesharing hosts. It focuses of file replication and provides limited remote
device access. Sprite is oriented towards a system of diskless workstations and their
servers. Sprite focuses on file caching for high-performance, and it provides very general
remote access that naturally extends to devices and pseudo-devices.

The second theme concerns maintaining the state of the distributed system in the
face of change. The system has to keep its internal state, which is distributed among the
operating system kernels on all the hosts, consistent in the face of host failures and dur-
ing the migration of processes from one host to another. Previous systems have relied on
stable disk storage, which is a potential performance bottleneck, especially as CPU
power continues to accelerate past disk performance. Other systems propose replicated
servers. TANDEM [Bartlett81] is a good example of a real system that uses replication.
Replication of servers is expensive, however, both in performance and equipment. The
cost of replication is only justifiable for certain transaction processing systems. Instead,
Sprite uses stable storage for a few pieces of critical state, and then it duplicates
performance-critical state in the main-memory of different hosts. The result is a high-
performance distributed file system with good failure semantics.

The final theme of the dissertation concerns extensibility. It is not practical or desir-
able to implement all system services inside the operating system kernel. Sprite includes
mechanisms that allow user-level processes to implement file-like objects (i.e., pseudo-
devices) and directory hierarchies (i.e., pseudo-file-systems). These provide a convenient
framework for implementing a variety of services outside the kernel. However, unlike
many modern operating systems, Sprite does not move all high-level services out of the
kernel. The most heavily used services, in particular file and device access, are kept in
the kernel to optimize performance. Furthermore, because the internal I/O and naming
interfaces are exported to the user-level servers, their functionality can be moved into the
kernel (or out of it) depending on performance requirements.
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The common thread to all of these themes is the file system interface. All objects,
whether they are local or remote, system or user-implemented, are named and accessed
in the same way. The system provides basic functionality common to all (e.g., crash
recovery, process migration, blocking I/O). Thus, the system is composed of several
well-integrated features that combine to provide a high-performance, robust, distributed
computing system.
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CHAPTER 2

Background and Related Work

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2.1. Introduction

This chapter presents background information on file systems, distributed systems,
and the Sprite operating system. While the dissertation concerns issues that stem from
the network environment, it is important to have a basic understanding of stand-alone file
systems. This chapter describes file system features such as a hierarchical directory sys-
tem, device-independent I/O, and data caching. Basic concepts of distributed systems are
also presented, including communication protocols, name services, and the client-server
model. Sprite has similar goals as other distributed systems such as LOCUS[Popek85]
and the V-system [Cheriton84], and the related work section describes the approaches
taken by these and other systems. Finally, some overall ideas about the scale of the dis-
tributed system, location-transparency, and the issue of stateful servers are discussed.

2.2. Terminology

Here are definitions for some terms I use throughout the dissertation:

Host A host is a computer on the network.

Kernel The kernel is the memory-resident code of the operating system that
executes in a privileged state. A distributed operating system like
Sprite is composed of the kernels on each host.

Application An application is a program that a user runs in order to perform some
task. Examples include text editors, compilers, and simulators.

Process A process is an executing program. It can be a user-level process that is
part of an application. An application can be composed of several
processes. There are also kernel processes in Sprite; the kernel has
several processes used to service network requests and do background
processing.

System Call A system call is a special procedure call that a user-level process makes
to invoke operating system functions. During a system call the process
continues execution inside the kernel in a privileged state. There is a
well-defined set of system calls used to open files, read the clock, create
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processes, etc.3

Object Object is a general term for things accessed via the file system inter-
face. It can refer to a regular file, directory, device, or pseudo-device.

File A file is the basic object maintained by the file system. A file has some
attributes like its type and ownership. A file may have disk storage
associated with it.

Device A device is an attached peripheral such as a tape drive, printer, display,
or network interface.

Device File A device file is a special file that represents a device. The device file
has no associated data storage, but its attributes define the type and
location of the device. The name of the device file is used to reference
the device.

Pseudo-Device A pseudo-device is an object implemented by a user-level server pro-
cess. Operations on a pseudo-device are transparently forwarded to the
server process by the kernel. Pseudo-devices are represented by special
files in the file system so they have names and attributes.

Directory A directory is a special file used by a file server to record the correspon-
dence between object names and disk files. The files referenced by a
directory may be ordinary files, other directories, or special files that
represent devices or pseudo-devices.

Client In general, a client is an entity that is receiving service from some other
entity. Most often I use this term to refer to the operating system kernel
when it needs service from a kernel on another host. Occasionally,
especially in Chapter 7 on user-level services, ‘‘client’’ will refer to an
application program that is requesting service from another application.

Client Kernel A Sprite kernel that is requesting service from a remote kernel, i.e. to
open a file for an application or to write out a dirty page from the vir-
tual memory system.

Server A server is an entity that provides some function to its clients. Again,
this term most often refers to the operating system kernel on a server
machine. In Chapter 7, ‘‘server’’ is used to refer to a user-level service
application.

File Server A file server is a host with disks that store a part of the distributed file
system. In addition to providing access to files, the Sprite file servers
implement the directory structure used for naming.

I/O Server An I/O server is the kernel that controls access to an object. In general
the I/O server for an object and the file server that names an object may

hhhhhhhhhhhhhhhhhhhhhhhhhhh
3 The Sprite system call interface is very similar to UNIX 4.3BSD. For historical reasons it

is not binary compatible, but a simple compatibility library is linked with standard UNIX pro-
grams so that they can run on Sprite.
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be different.

I/O Stream A stream is an I/O connection between a process and an object in the
file system. The term ‘‘stream’’ refers to data transfer between the
object and the process. A process may also manipulate an object via an
I/O stream in other ways such as truncating the length of a file or
rewinding a tape device.

2.3. The UNIX File System

The UNIX file system is important because it has several features that make it easy
to use and share information[Ritchie74], and it is widely used today. By adopting the
UNIX file system interface Sprite benefits from several good design features and a large
base of existing applications. While Sprite retains the UNIX interface, the implementa-
tion of the Sprite kernel was done completely from scratch, and its internals differ
markedly from other UNIX implementations. This section reviews the major features of
the UNIX file system that relate to the rest of the dissertation.

2.3.1. A Hierarchical Naming System

The UNIX file system is organized as a hierarchical tree of directories and files.
The tree begins at a distinguished directory called the root. A hierarchical naming sys-
tem is created by allowing directory entries to name both files and directories. This
recursive definition of the name space originated in Multics [Feirtag71] and is used in
UNIX and most modern operating systems.

Objects have a pathname that is a sequence of components separated by slash char-
acters (e.g., ‘‘/a/b/c’’). The root directory is named ‘‘/’’. Name resolution is the process
of examining the directory structure in order to follow a pathname. It is an iterative pro-
cedure where the current directory is scanned for the next component of the pathname. If
the component is found and there are more components left to process, then the current
directory is advanced and the lookup continues. The lookup terminates successfully
when the last component is found. For example, the pathname ‘‘/a/b/c’’ defines a path
through the hierarchy that starts at the root directory, ‘‘/’’, and proceeds to directory
‘‘a’’, and on to directory ‘‘b’’, and ends at object ‘‘c’’. ‘‘/a/b/c’’ can be the pathname of
a file, directory, device, pseudo-device, or a symbolic link to another pathname. (Sym-
bolic links are explained below.)

As a convenience to users, UNIX provides a current working directory and relative
pathnames. Relative pathnames implicitly begin at the current working directory, while
absolute pathnames begin at the root directory. Relative pathnames are distinguished
because they do not begin with ‘‘/’’, the name of the root directory. For example, if the
current directory is ‘‘/a/b’’, then the object ‘‘/a/b/c’’ can be referred to by the relative
pathname ‘‘c’’. The current working directory can be changed by a process in order to
make it easier to name commonly used files. Relative names are shorter, which means
they are both easier to type by the user and more efficient to process by the operating sys-
tem.
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The combination of relative pathnames and the specification of the parent directory
means that a pathname can begin at any point in the hierarchy and travel to any other
point. A directory’s parent may be referred to with the name ‘‘..’’. For example, if the
current working directory is ‘‘/a/b/c’’, then ‘‘..’’ refers to ‘‘/a/b’’. Sibling directories are
easily referenced with relative names (e.g., ‘‘../sibling’’). Thus, relative pathnames can
be used within a set of related directories so that the absolute location of the directories
isn’t important, only their relative location.

The hierarchical structure of the name space can become more arbitrarily connected
by using symbolic links. A symbolic link is a special file that is a reference by name to
another point in the hierarchy. There are no restrictions on the target of a symbolic link,
so the plain hierarchy can be converted to a more general directed graph. Symbolic links
are implemented as files that contain pathnames. Traversing a link is implemented by
replacing the name of the link with its contents and continuing the normal lookup algo-
rithm. For example, if ‘‘/a/d’’ is a symbolic link to ‘‘b/c’’ then the pathname ‘‘/a/d/f’’
gets expanded to ‘‘/a/b/c/f’’. Symbolic links can also cause jumps back to the root. If
‘‘/x/y/z’’ is a symbolic link to ‘‘/a/b’’, then the pathname ‘‘/x/y/z/c’’ gets expanded to
‘‘/a/b/c’’. These links are shown in Figure 2-1.
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Figure 2-1. Symbolic links in a hierarchical name space. The hierarchical structure of
the name space can become arbitrarily connected by using symbolic links, which are
depicted as dotted lines in this figure. ‘‘/x/y/z’’ is a link to ‘‘/a/b’’. ‘‘/a/d’’ is a link to
‘‘b/c’’.



14

2.3.2. Objects and their Attributes

The file system is used to access different types of objects. To distinguish among
the different object types, the file system keeps a set of attributes for each one. One attri-
bute is its type, (e.g. file, directory, symbolic link, or device). There are also ownership
and permission attributes that are used for access control. All objects have these attri-
butes and are subject to the same access controls. Applications can query the attributes
of an object, and the owner of an object can change some attributes (like the access per-
missions). Other attributes, like the size and modify time, are updated by the system as
the object is accessed.

It is sometimes important to distinguish between the name of an object and the
object itself. Special files are used as place-holders for non-file objects; their entry in a
directory gives the object a name. The special files also serve as convenient repositories
for attributes of these other kinds of objects. A device file, for example, records the type
and unit number of the device, and, in Sprite, it records the host to which the device is
attached. These details are ordinarily hidden by the operating system, but in Chapter 3,
which describes the internal architecture of the Sprite file system, it is important to
understand the difference between the representation of an object’s name and the object
itself.

2.3.3. I/O Streams

An I/O stream represents a connection between a process and an object in the file
system.4 A stream is either created by naming a file system object with the open opera-
tion, or, as described below, a stream may be inherited. Each I/O stream has a current
access position that is maintained by the kernel on behalf of the processes using the
stream. Each read and write operation updates the stream’s current access position so
that successive I/O operations apply to successive ranges of the object. This supports the
common method of file system accesses in which the whole object is read or written, and
it eliminates the need for an explicit location (or ‘‘offset’’) parameter to the read and
write system calls.

2.3.3.1. Standard I/O Operations

The following UNIX operating system calls apply uniformly to I/O streams.

open This operation follows a pathname and sets up an I/O stream to the underlying
object for use in the remaining operations. Access permissions are checked on
the directories leading to the object and on the object itself.

hhhhhhhhhhhhhhhhhhhhhhhhhhh
4 Sprite implements the UNIX concept of an I/O stream, which includes stream inheritance

and stream sharing. The standard UNIX terminology is ‘‘open file descriptor’’, however, instead
of ‘‘I/O stream’’.
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read This operation transfers a number of bytes from the object into a buffer in the
application’s address space. The operating system maintains a current access
position for a stream that indicates what byte is the next one to read. Reading
N bytes advances the access position by N so that successive reads on a stream
advance sequentially through the object’s data.

write This operation transfers a number of bytes to the object from a buffer in the
application’s address space. The access position is advanced in the same way
that the read operation advances it.

select This operation blocks the process until any one of several streams are ready for
I/O, or until a timeout period has expired. Select is useful for servers that have
several streams to various clients, or to window system clients that have a dif-
ferent stream for each window they use.

ioctl This operation provides a general hook to get at object-specific functionality.
The parameters to ioctl include a command specifier, an input buffer, and an
output buffer.5 Example operations include rewinding tape drives and setting
terminal erase characters. Sprite also uses ioctl to implement a number of mis-
cellaneous UNIX system calls such as ftrunc, which truncates a file, and fsync,
which forces a cached file to disk.

fstat This returns the attributes of the object to which the stream is connected. This
includes the object’s type (file, device, pipe), and type-specific attributes like
the size of a file.

close This operation removes a reference to an I/O stream, and after the last refer-
ence is gone the stream is destroyed. Additional references arise during pro-
cess creation because streams are shared between parent and child.

2.3.3.2. Stream Inheritance

Each UNIX process begins execution with access to three standard I/O streams:
standard input, standard output, and standard error output. Instead of having the operat-
ing system kernel set up standard streams for a new process, UNIX uses a more general
mechanism of stream inheritance. When a process is created it inherits its I/O streams
from its parent process. The parent is free to set up any configuration of I/O streams for
the child. UNIX command interpreters, which are the parent processes of user com-
mands, ensure that the standard streams are set up.

Inheritance is useful with processes that are independent of what their input and out-
put I/O streams are associated with. Command interpreters provide the capability to
hhhhhhhhhhhhhhhhhhhhhhhhhhh

5 ioctl in Sprite is a super-set of UNIX ioctl. UNIX ioctl only uses a single buffer and its
size is implicit. Sprite ioctl has two buffers, one for input and one for output, and their sizes are
explicit. This extension makes it easier to pass the ioctl operation around in a general way (e.g to
remote hosts or to pseudo-device servers).
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redirect the standard streams to files and devices so that users can specify on the com-
mand line where input and output should go, and the program does not have to worry
about it. For example, program output might go to a file, to a peripheral device like a
printer, or to another process which transports the data across the country via a special-
ized internetwork protocol. This notion of object-independent I/O originated in Multics
(as ‘‘device-independent I/O’’ [Feirtag71]) and was adopted by UNIX.

A subtle, but important, side effect of stream inheritance is the fact that an inherited
stream is actually shared between the parent and the child process. Specifically, the
stream’s current access position is shared; I/O operations by any process sharing the
stream advance the stream’s current access position. This property is most often used
with command files (‘‘scripts’’ in UNIX). Each command is a child process of a com-
mon parent. The parent process shares the input and output streams with each child in
succession, and each child process advances the stream offsets as it does I/O. Output of
one process will not overwrite output of a previous process, and input processed by one
process will not be re-read by the next process. (Read-ahead buffering by library I/O
routines, however, can cause one process to steal input from the next one.) Preserving
these semantics of shared I/O streams can be tricky in a distributed environment, and the
way this is done in Sprite is described in Chapter 5.

2.3.3.3. Pipes

A pipe is a one-way communication channel that connects the writing stream of one
process to the reading stream of another process. Ordinary UNIX pipes have no name in
the file system.6 Instead, two I/O streams, one for reading from the pipe and one for writ-
ing to it, are created with the pipe system call. Parent processes can use stream inheri-
tance to pass these streams to child processes. UNIX command interpreters make it easy
to compose a set of processes into a pipeline, with the output of the first hooked to the
input of the second, and so on. There are a number of standard filter programs in UNIX
that can be composed into useful pipelines. They include programs that sort, edit, select
lines based on pattern matching, compress and decompress.

2.3.4. The Buffer Cache

In order to reduce the latency associated with disk accesses the file system main-
tains a block-oriented cache of recently accessed file data. The cache is checked before
each disk read, and if the block is in the cache then a disk access is avoided. When data
is written it is placed in the cache and written back in the background so applications
don’t have to wait for the disk operation. Data is allowed to age for 30 seconds before
being written to disk. Studies by Ousterhout [Ousterhout85] and Thompson [Thomp-
son87] show that many temporary files get created, read, and deleted within this time
hhhhhhhhhhhhhhhhhhhhhhhhhhh

6 UNIX System V has named pipes, which do have names in the file system.
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period so their data never gets written to disk.

2.3.5. UNIX File System Summary

To summarize, the important features of the UNIX file system include its hierarchi-
cal name space, object-independent I/O with its open-close-read-write interface, and the
main-memory buffer cache to optimize performance. Sprite retains these features in its
distributed environment, although it often employs different mechanisms and techniques
than a stand-alone UNIX system.

2.4. Distributed System Background

The two fundamental problems introduced by a distributed system are host-to-host
communication, which is addressed by network communication protocols, and resource
location, which is addressed by name servers that map resource names to network loca-
tions and other resource attributes. The client-server model is commonly used to struc-
ture a distributed system. In this case servers are identified by the name service, and a
standard communication protocol is used between clients and servers. These topics are
discussed in more detail below.

2.4.1. Network Communication

Communication protocols provide a standard way to communicate between hosts
connected by a network. Protocols address such issues as routing a message through the
network and reliable transmission of messages over an unreliable network. A range of
protocols exist that vary in their reliability and efficiency. Cheap but unreliable
datagram protocols [IP81] are used to build up more reliable (and more expensive) pro-
tocols such as virtual circuit and request-response protocols. A virtual circuit provides a
reliable data channel between two hosts that is useful for bulk data transfer and long-
lived connections [TCP81]. Virtual circuit protocols are usually optimized towards
increasing throughput, maximizing the rate at which large amounts of data can be
transferred. The request-response protocols [Birrell84] are oriented towards service
applications where clients make requests of servers and the servers return some response.
These protocols are usually optimized towards reducing latency, minimizing the time a
client has to wait for a response from the server.

2.4.2. The Client-Server Model and RPC

A standard way to structure a distributed system is to have servers that control
resources and clients that need to access these resources. A standard communication pro-
tocol enables a client to access any server in the system. The least structured and most
flexible communication protocol is a datagram protocol in which a message is sent from
Client A to Server B (or vice versa). In practice, however, it turns out that a more styl-
ized request-response protocol is used between clients and servers. The client issues a
request message to the server and blocks itself awaiting a response message from the



18

server. Upon receipt of a request message the server performs some function and returns
the results to the client in a response message. The reason that request-response com-
munication is preferred is that it resembles what happens in a programming language
during a procedure call. The caller suspends itself as it invokes a procedure, and it con-
tinues after the procedure completes. By introducing stub procedures that handle pack-
aging of parameters into messages and the use of the request-response protocol, the client
can use a regular procedure call interface to access the server. This technique is called
Remote Procedure Call (RPC) [Birrell84].

There are two main benefits from the use of RPC. The first is that by retaining the
procedural interface it is efficient to access local resources. In the local case, the client
executes the service procedure directly and there is no need to switch to a server process.
In contrast, an explicit message-based interface between the client and the server adds
extra overhead from messages and process switching even in the local case. The second
benefit is that RPC encourages a clean system design because the effects of message
passing are confined to the stub procedures and the request-response protocol. The client
and the server are basically unaware of the complexities associated with the message pro-
tocol. The internal Sprite file system architecture, which is described in detail in the next
chapter, relies on these aspects of RPC. Each Sprite kernel communicates with other ker-
nels via a kernel-to-kernel RPC protocol when it needs access to remote resources
[Welch86a].

2.4.3. Resource Location

Most distributed systems have a name service as one of their fundamental com-
ponents [Terry85][Schroeder84][Oppen83][Needham79]. The role of the name service is
to provide a registry for all services in a distributed system. The process controlling a
resource (e.g., a file system or printing device) registers itself with the name service, and
other processes can query the name service in order to determine the correct process with
which to communicate. Thus, using a resource in a distributed system is divided into two
steps: 1) an initial binding step in which the resource is located and 2) the subsequent use
of the resource by exchanging messages with the server that controls the resource.

One disadvantage of using a global name service is that it adds overhead; the name
server must be contacted first to locate a particular service before the service can be
invoked directly. Because of this, name servers have been used to locate things like
hosts, people, and other services, but name servers are not typically used on the fine grain
needed for a file system, i.e. for each file in the system. This results in a two-level nam-
ing system (i.e. service-name:object-name) and perhaps also a duplication of effort
between each service, which has to interpret its object names, and the name service,
which has to interpret service names.

In Sprite, the file system name space is used as the name service [Welch86b]. The
binding between client and server is done as part of the open system call, and the read,
write, and ioctl calls are used to access the service (e.g., files, devices, and pseudo-
devices). This will be explained in detail in Chapter 3. This approach optimizes the
common case of file access because there is only a single server involved; the overhead
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of accessing a separate name service is eliminated.

2.5. Related Work

This section describes related work in distributed systems, including early remote
file access systems, message-passing systems, and distributed file systems.

2.5.1. Early Distributed Systems

An early approach to providing a distributed system was to glue together existing
stand-alone systems with a simple name service. This approach was taken in systems
such as UNIX United [Lobelle85] [Brownbridge82] and the Cocanet system [Rowe82]
by modifying file name syntax to explicitly identify the server (e.g., ‘‘hostA:/a/b/c’’).
The runtime library was modified to check for file names with the special syntax, and a
special library routine was invoked to forward the operation to a remote host. This
approach is clean and simple if the operating system interface is also simple because
there may be only a few points in the library that need modification. The disadvantage of
modifying name syntax is that the distribution of the system is evident in the name space.
Full names are ‘‘server:name,’’ so it is not possible to move files among hosts without
changing their full names.

2.5.2. Message-Based Systems

Several research operating systems have been developed that focus on communica-
tion protocols as a basic system component. In these message-based systems, all
processes interact by exchanging messages. The operating system provides the capabil-
ity to reliably send messages to processes executing on any host in the network
[Powell77] [Bartlett81] [Fitzgerald85]. This represents a distinct change in system
model from the traditional operating systems that provide each process with an isolated
virtual machine upon which to execute[Goldberg74]. Instead, a process in a message-
based system interacts asynchronously with other processes and the operating system
itself by sending and receiving messages.

2.5.2.1. The V System

The V system[Cheriton84] has focused on a simple, high-performance message
passing facility as one of its fundamental building blocks. The V kernel only implements
address spaces, processes, and the interprocess communication protocol. All higher-level
system services are implemented outside the kernel in separate processes. The argument
to support this approach is that because the operating system kernel is simpler it can be
more efficient, and because most system services are outside the kernel it is easier to
experiment with new implementations of these services. An important common denomi-
nator among the V servers is a naming protocol so that all system services can be named
in a similar way [Cheriton89]. The naming protocol distinguishes among different
servers with name prefixes such as ‘‘print’’ and ‘‘fileserverA’’. A complete name is a
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prefix and a name (e.g., ‘‘fileserverA]a/b/c’’). The ‘]’ character distinguishes the prefix,
and a global name service is consulted to locate the server process corresponding to this
prefix. The remainder of the name is evaluated by the server itself. The V system also
has a Uniform I/O protocol [Cheriton87] for those services that provide access to files
and peripheral devices. This protocol defines standard message formats that are used to
read and write data from and to the service.

2.5.2.2. Mach

Mach [Accetta86] is another message-passing system that is designed to support a
set of user-level server processes. The focus of Mach, however, has been on the use of
virtual memory techniques (i.e., memory mapping) to optimize interprocess communica-
tion. Processes can share memory regions directly, or they can exchange messages as is
done in the V system. Virtual memory mapping techniques are used to optimize message
passing between processes on the same host. This approach is oriented towards mul-
tiprocessors with a globally shared memory, and it does not work as well in a distributed
system. Mach invokes a user-level server process to implement its network communica-
tion protocols, and user-level server adds extra overhead [Clark85]. In contrast, Sprite
implements its RPC protocol within the kernel so the remote case is still relatively
efficient.

2.5.2.3. Amoeba

The Amoeba distributed system [Renesse89] is a message-based system that is dis-
tinguished by its use of capabilities for access control and message addresses. A capabil-
ity is an encrypted token that represents some service or process [Fabry74], and the
operating system provides the ability to send a message to the process that issued the
capability. The capability also encodes access permissions so that the service can control
use of its resources. A name server provides a directory service that maps names to capa-
bilities.

2.5.3. Remote File Services

A frequently used service provided by the operating system is the file system. The
file system provides long term storage for program images and data files, so virtually all
other services and applications depend on it. Because of this, most distributed systems
include some form of remote file access capability. Sprite takes this approach to the
extreme by making its distributed file system the foundation for the rest of the system. A
number of other distributed file systems are reviewed below.

2.5.3.1. WFS

WFS was a simple remote file service that provided page-level access to files stored
on a file server[Swinehart79]. Files were created and deleted using a unique identifier
(UID), and read and write operations applied to whole pages of a file. All other file-
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related operations (e.g., high-level naming, locking, etc.) were provided by other ser-
vices. An important characteristic of WFS is that it was a ‘‘stateless’’ service; all long
term state of the WFS file service was kept on disk so that the server could crash without
losing state information. A stateless design simplified the implementation of WFS. Each
write request was blocked until the data was safely on the disk, and the server could then
‘‘forget’’ about the write. WFS is an example of a very low-level service; it simply
exports a disk to other hosts on the network.

2.5.3.2. IFS

The ‘‘Interim’’ File Service (IFS) was developed as a follow-on to WFS. The IFS
servers were designed to be shared repositories for files in the CEDAR environment
[Swinehart86]. Each CEDAR workstation, however, was a stand-alone system with its
own own private file system. The private file system was used as a cache of files kept on
the IFS servers, and shared files had to be copied to and from the IFS servers as needed.
Tools were developed to make this style of sharing less tedious and error prone
[Schroeder85], but users still had to be conscious of where files were stored and whether
or not they were safely backed up to an IFS server.

2.5.3.3. NFS

NFS is a remote file service developed for the UNIX environment [Sandberg85].
Like WFS, NFS is based on the stateless server model. Consequently, an NFS server
doesn’t know about open I/O streams. There is no open or close operation in the NFS
protocol; an NFS server just responds to read and write requests that identify the file and
the user that is making the request. The reason that the stateless server model was
adopted by NFS was to simplify error recovery. A stateless server can be restarted at any
time without breaking its clients. Clients retry operations indefinitely, even if it takes the
server minutes or hours to respond. The stateless nature of the server means it can begin
servicing read and write requests immediately after it restarts. There is no special
recovery protocol required to bring an NFS server back on-line.

However, a drawback of the stateless nature of NFS is demonstrated by its caching
system. Clients keep a main-memory cache of file data to eliminate some network
accesses. Because the NFS server is stateless, however, the caching scheme cannot pro-
vide consistency while cached files are being updated; it is possible for a client to get an
inconsistent view of the file system. The stateless server doesn’t remember what clients
are caching files so it is the clients responsibility to keep their caches up-to-date. They
achieve this by periodically checking with their server, which leaves windows of time
during which file modifications may not be visible at a client. Thus, the stateless nature
of NFS prevents it from maintaining the semantics of a stand-alone UNIX file system
when it uses caching to improve performance.



22

2.5.3.4. RFS

RFS is another UNIX-based remote file service[Rifkin86]. It differs from NFS in
that the servers do keep state about how their files are being used by clients. Server state
is used to support a more sophisticated caching scheme that guarantees consistency. The
servers make callbacks to clients that indicate that a file is being modified. This elim-
inates the case where a client fetches stale data from its cache. One problem with RFS,
however, is that there is no mechanism to recover the server’s state after it crashes. This
means that I/O streams to files on a server that crashes are forcibly closed [Atlas86]. In
contrast, a stateless NFS server can crash and reboot and I/O operations are only delayed,
not aborted.

2.5.3.5. AFS

The Andrew File System (AFS) was developed to support a large scale system, up
to several thousand nodes [Satyanarayanan85]. It uses a caching system that keeps files
on local disks, which is similar to IFS, instead of a system that caches files in main
memory, which is done in NFS and RFS. Unlike IFS, however, AFS automatically
manages the file cache so it is transparent to the user. Also, consistency is guaranteed,
except during concurrent updates by different clients, by the use of callbacks to the
clients. AFS puts a time limit on each callback in order to reduce the state maintained by
the server. A server only promises to make a callback within the time limit, and it can
discard information about the callback after the time limit expires.7 One drawback of the
caching system used in AFS is that is assumes local disks; diskless clients are not sup-
ported.

2.5.3.6. LOCUS

LOCUS[Popek85] is a UNIX-based distributed system is similar to Sprite in many
respects. Perhaps the most important goal these systems share is to provide a transparent
distributed file system, one in which the location of files is not evident or important to
users. However, LOCUS was designed to allow sharing among a small number of
timesharing hosts, while Sprite was designed to support a larger number of diskless
clients and file servers. Different assumptions are made in the design of the two systems.

The most significant assumption is that LOCUS depends on file replication
[Walker83a], while Sprite uses file caching. In LOCUS, files are replicated in the file
systems of different hosts to increase their availability and improve performance. Cer-
tain critical files are replicated in every host’s file system so that hosts can remain auto-
nomous. Replication requires a more complex write protocol so that all available copies
of a file get updated. The primary advantage of replication over caching is that it
hhhhhhhhhhhhhhhhhhhhhhhhhhh

7 A callback with a time limit is sometimes referred to as a lease [Gray89]. The server
leases a file to a client for a given period of time.
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improves the availability of the system. Local copies of a file can be used even if a net-
work partition has isolated a host from the rest of the system. However, autonomous
operation gives rise to possible conflicts between updates to different copies of a file
[Parker83]. Replication requires a recovery protocol so that after a host crash or a net-
work partition the system can ensure that all file system replicas are consistent. The
LOCUS recovery protocol requires communication among every host-pair for an overall
cost proportional to the square of the number of hosts. Thus, replication is attractive
because it can improve availability, but it comes at the cost of a more complex write pro-
tocol and and expensive recovery protocol.

In contrast, the caching approach taken in Sprite is much lighter-weight. Files are
cached in main-memory instead of duplicated on disks so they are efficient to access.
Write operations are simpler because they do not have to be propagated to all cached
copies of a file. Instead, out-of-date copies are invalidated the next time they are used.
As described in [Nelson88a], this invalidation requires at most one remote operation.
Recovery is also simpler in Sprite. Its cost is only proportional to the number of clients
caching a file as opposed to the number-of-hosts-squared cost incurred in LOCUS. The
caching approach taken in Sprite simplifies things, and it provides high-performance.

2.5.3.7. Other Systems

There are a number of other remote file systems reported in the literature. Apollo
DOMAIN is an early distributed system that is based on the memory-mapped file model
[Leach83][Leach82]. There are many UNIX-based systems similar to NFS or RFS
[Hughes86][Atlas86]. Other systems focus on file replication [Tomlinson85][Ellis83], or
transaction support [Cabrera87] [Wilkes80][Mitchell82] [Oki85], which are topics not
considered in this dissertation.

2.6. The Sprite File System

There are three important aspects of the Sprite file system: the scale of the system,
location-transparency, and distributed state. The effect of these features on the design of
Sprite are discussed below.

2.6.1. Target Environment

The scale of the distributed system is important. There are roughly three classes of
distributed systems: 1) small collections of autonomous hosts that wish to cooperate to a
limited extent, 2) larger collections of hosts, usually personal workstations, that are more
interdependent, and 3) very large collections of hosts that can span organizational boun-
daries. Sprite is targeted for the middle range, a medium sized network (up to 500 hosts)
of high-performance diskless workstations and a set of supporting file server machines.
A small example is shown in Figure 2-2. This moderate scale allows for certain simpli-
fying assumptions. For example, server hosts can be located using broadcast. geographi-
cal distribution is not an issue, nor is per-host autonomy. Instead, Sprite unifies a
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Figure 2-2. A typical Sprite network. The file system is shared uniformly by all hosts,
and it has names for devices and user-level services as well as files. Most Sprite hosts
are diskless workstations.

moderate size network into a single computing environment.

Sprite was developed on Sun-2 and Sun-3 workstations, which are rated around 1-2
MIPS (millions of instructions per second) processors. They have from 4 to 16 Mbytes
of main memory. The file servers have one or more disks, each with a capacity of
70-1000 Mbytes. Today Sprite runs on the latest DEC and Sun workstations which have
10-20 MIP processors and 12-128 Mbytes of main memory. Our system currently has
four file servers and about 40 clients, and it is gradually expanding.

2.6.2. Transparency

The Sprite file system is location-transparent: the same interface applies to file sys-
tem objects regardless of their location in the network. Transparency begins with a nam-
ing system that does not reflect an object’s location. The approach taken in Sprite is to
extend the file system name space so it provides location-transparent names for devices
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and user-level server processes (i.e., pseudo-devices) as well as names for files and direc-
tories. This approach is in contrast to the approach of adding a separate name service
that is used to locate file servers, device servers, and other user-implemented services.
The benefit of extending the file system name space is that users and applications are
presented with the same interface found in a stand-alone system. All the details about
where objects are kept is hidden by the operating system.

Access to objects must be location-transparent, too. Operations on any type of
object must apply if the object is on another host. Thus, all objects are available
throughout the system. In contrast, most other distributed systems provide remote file
access, but very few systems provide access to remote devices. Remote device access is
important because devices like printers and tape drives can be shared by all clients.
Displays can be accessed remotely to provide direct user-to-user communication. Disks
can be accessed remotely for diagnostic and administrative reasons.

Remote device access is more difficult than remote file access, however, because
many devices have indefinite service times. A file access, in contrast, completes or fails
in a relatively short period of time, on the order of 10s of milliseconds. Remote opera-
tions have to be structured so that critical resources are not tied up for an indefinite
period of time while waiting on a slow device. In RFS, for example, remote device
operations that have to wait are aborted if server resources would be exhausted [Rif-
kin86]. In Sprite, remote operations are structured differently so that long-term waiting
doesn’t use up critical server resources.

2.6.3. Stateful vs. Stateless

The Sprite file system maintains internal state information that is itself distributed
among the hosts in the network. There are two approaches to maintaining this state. In
the so-called ‘‘stateless server’’ approach, each server host is basically independent of
other hosts, and it can service requests with no state about previous requests. Any long-
term state maintained by the service is kept in non-volatile memory so that the server can
crash at any time and not corrupt itself. One of the first examples of a stateless service
was WFS[Swinehart79]. The NFS[Sandberg85] protocol also uses the stateless server
model. The main advantage of the stateless server approach is that failure recovery is
simplified. The server merely reboots and performs some consistency checks on its non-
volatile data structures. Clients do not need to take any special recovery action. They
can retry their service requests until the server responds. However, there can be a perfor-
mance cost in the stateless approach because the server must reflect all important state
changes to its disk.

A more optimistic approach is to allow the server to build up volatile state about
how its resources are currently being used. The extra state can be used to optimize
access to the server’s resources. Consider an I/O stream from a process on a client to an
object on a server. If the server keeps state about an I/O stream then permission check-
ing can be done when the I/O stream is created and need not be repeated each time the
I/O stream is used. A stateless server, in contrast, must recheck permissions each time a
file is read or written. A stateless server also has difficulty supporting the UNIX unlink
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operation. Unlink removes a directory entry for a file, but the file is not deleted from
disk until I/O streams that reference the file are closed. A server cannot support this
semantic of unlink if it does not keep state about I/O streams.

A more significant performance-related example concerns the main memory buffer
cache of file data. A client of a stateful server can count on help from its server to keep
its cache consistent with activity by other clients[Nelson88a] [Back87] [Howard88]. The
server can inform Client A that its cached version of a particular file is no longer valid
because Client B wrote a new version. A stateless server, in contrast, cannot help its
clients in this fashion because it doesn’t keep state about what clients are using its
resources. Instead, clients of a stateless server must poll their server to determine if a
cached file is up-to-date, and this reduces the efficiency of the client’s cache. Further-
more, there can be periods of time between polling in which a client gets stale data from
its cache[Sandberg85].

The main problem with the stateful approach, however, concerns failure recovery.
There must be some way to recover the server’s state if it fails, otherwise a server crash
can cause clients to fail as well. As described in Chapter 6, Sprite relies on redundancy
in the system to implement a state recovery protocol in which servers can clean up after
failed clients and clients can help a failed server recover its state after it restarts.

2.7. Conclusion

The basic problem considered in this dissertation is how to organize a collection of
computers connected by a network into a unified system. The approach taken in Sprite is
to use the file system as the focal point of the system. This approach is motivated by
timesharing systems where users shared all resources (including the CPU), and coopera-
tive work was easy (albeit slow). By extending the file system to provide shared access
to resources located throughout the network, the best features of the timesharing environ-
ment are regained along with the performance benefits of personal workstations. The
UNIX file system, in particular, is chosen as a starting point because of its current popu-
larity and because it embodies many good design decisions, including a hierarchical
name space and the notion of device-independent I/O operations.

The latter half of this chapter considered related work and the various issues raised
by distributed systems. The fundamental issues are naming and communication, which
Sprite addresses by extending the file system name space to name other objects (e.g.,
devices and pseudo-devices), and by using a kernel-to-kernel RPC protocol for efficient
remote access. A few key ideas were also discussed. The client-server model provides a
way to structure the system. With a standard communication protocol (i.e. RPC) it is
possible for a client to access any server in the network. Location transparency is impor-
tant so that the distributed system has the look and feel of a unified system; details of the
distributed environment can be managed by the operating system. The stateful nature of
the system is also important. Server state is required to support all the semantics of a
stand-alone UNIX file system and to support a high-performance caching system, but
server state makes failure recovery more difficult.
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CHAPTER 3

Distributed File System Architecture
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3.1. Introduction

This chapter describes the internal software architecture of Sprite’s distributed file
system. The architecture supports the file system’s goal of providing access to files, peri-
pheral devices, and pseudo-devices that are located all around the network. These
objects are all accessed via the same file system interface, regardless of their location in
the network. The underlying distribution of the objects among a collection of file servers
and client workstations is not important to users. A ‘‘single system image’’ is provided
where any host is as usable as any other, much like a timesharing system where all the
terminals provide equivalent access to the central host.

The architecture makes a fundamental distinction between naming and I/O opera-
tions. This distinction allows file servers to play the role of ‘‘name server’’ for file sys-
tem objects that are not kept on the file servers. These objects include devices and
pseudo-devices (i.e., user-level server processes). The architecture supports a three-party
situation among the file server that holds the name for an object, the I/O server that
implements I/O operations on the object, and the client that uses the object. Thus, the
Sprite architecture provides the flexibility found in systems that introduce a network
name service [Wilkes80] [Terry85] [Renesse89], but it does this by reusing the mechan-
isms needed for remote file access. By taking this approach, the architecture optimizes
the common case of file access because there is only a single server involved, the file
server.

The addition of devices and services to the file system creates problems that are not
present in other distributed file systems. The main problem is that devices and arbitrary
user-implemented services can have indefinite service times, while a file access has a
bounded service time. It is important to structure the system so that critical operating
system resources cannot be exhausted by too many indefinite service calls. For example,
each Sprite kernel keeps a pool of kernel processes that are used to service remote
requests. If the server processes were allowed to block indefinitely on a device, then all
the server processes could be used up and prevent other requests from being serviced.
Thus, chapter describes a synchronization technique for remote blocking I/O operations
that solves this problem. The technique is also applicable to the select operation, which
is used to wait on many different files, devices, and services simultaneously.

A distinctive feature of the Sprite file system is that it supports stateful servers.
Sprite servers maintain state about how their resources are being used by clients. The
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state is useful for a number of reasons: 1) state helps guard against attempts to misuse
resources, 2) state is needed for file locking and exclusive access modes, 3) state is used
to implement remote blocking I/O operations, and 4) state helps the servers optimize
access to their resources. In short, server state is required to fully implement all the
semantics found in a stand-alone file system. The most significant example of this is the
caching system used in Sprite. All Sprite hosts, clients and servers, keep main-memory
caches of recently used file data to optimize file accesses [Nelson88a]. The file servers
maintain state information describing how their files are cached. The servers guarantee
that clients always have a consistent view of file data, even during concurrent updates by
different clients. They rely on their state information to achieve this consistency. This
chapter describes the way the system maintains its state efficiently during normal use,
while Chapter 6 describes the way the system repairs its state after failures.

In contrast, the ‘‘stateless’’ approach taken by systems such as WFS[Swinehart79]
and NFS[Sandberg85] limit the semantics of the system. A stateless server cannot make
guarantees to clients that cache data about the consistency of their cached data. Instead,
it is the client’s responsibility to poll the server. Also, the stateless approach can lead to
garbage collection problems; often there is no way to know if names still exist for
objects, or if objects still exist for names [Terry88]. In a stand-alone UNIX file system,
for example, it is possible to remove the name for a file while there are still open I/O
streams accessing the file. The file is not deleted from disk, however, until the I/O
streams are closed. This requires shared state between the naming and I/O parts of the
system that is found in few distributed systems. Thus, it is the combination of stateful
servers and the use of the file system name space as the name service that distinguishes
Sprite from other work in distributed systems.

A notable exclusion from this file system architecture is any description of the disk
sub-system, file formats, disk allocation policies, etc. These are considered ‘‘object-
specific’’ details that only pertain to file access They are hidden below the internal I/O
interface. The current implementation of the Sprite disk sub-system is loosely based on
the fast-file-system work of McKusick[McKusick84]. Current work with Sprite includes
research into log-structured file systems to achieve even higher disk bandwidth
[Ousterhout89a]. However, the details of the disk sub-system are not important in the
discussion of this architecture, which mainly addresses issues raised by the network.

The rest of this chapter is organized as follows. Section 3.2 motivates the division
of the architecture into general-purpose and object-specific modules. Section 3.3
describes the data structures that represent an I/O stream. Section 3.4 describes the inter-
nal naming interface, and Section 3.5 describes the internal I/O interface. Section 3.6
presents measurements of the system. Section 3.7 compares the Sprite file system archi-
tecture with UNIX-based architectures, and Section 3.8 concludes the chapter.

3.2. General Description

The file system is used to access many different types of objects. The goal of the
architecture is to gracefully handle the many different cases that need to be implemented.
It is important to carefully organize the architecture so that the combination of different
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types of objects and different features does not lead to an explosion of special case code
in the implementation. The code is organized into general-purpose modules and object-
specific modules. The general-purpose modules are independent of the type of the object
being accessed, so their functionality can be applied to all types of objects. The object-
specific modules hide the details about different cases that the architecture has to handle.

The architecture defines an interface between the general-purpose routines and
lower-level, object-specific routines. There are several object-specific implementations
of the interface (i.e., one for local files, one for remote devices, etc.). The general-
purpose routines invoke the proper object-specific routines through the interface, and the
actual case they invoke is hidden. There are no object-specific dependencies in the
general-purpose routines. This approach has become known as an ‘‘object-oriented’’
approach, although the implementation of Sprite does not rely on an object-oriented
language or other special support. Modularity has been achieved by careful design of the
main internal interfaces and supporting data structures. The indirection through the inter-
face to different object-specific implementations is achieved with a simple array of pro-
cedure variables that is indexed by a type. The type is explicit in the data structures that
represent an I/O stream as described below in Section 3.3.

3.2.1. Naming vs. I/O

The system call interface to the file system reflects a basic split between naming and
I/O operations. Figure 3-1 lists operations on pathnames. Figure 3-2 lists the operations
made on open I/O streams. (For completeness, the remaining FS system calls are given
in Figure 3-3.) The distinction between naming and I/O is important in the Sprite file
system because naming operations are implemented by the file servers, while any host
can be the I/O server for an object (i.e. a device). The distinction between naming and
I/O is supported by having two main internal interfaces in the architecture, one for opera-
tions on pathnames and one for operations on open I/O streams. The naming interface
hides the distribution of the name space among local and remote file servers, and it is
largely independent of the type of object being named. The I/O interface hides the dif-
ferent kinds of objects accessed via the file system, and it is independent of how the
name of an object is implemented. These interfaces are distinct so that different servers
can implement the naming and I/O operations for the same object. Note, however, that
the file servers are also the I/O servers for their files, and this allows optimization of file
access in comparison with a system that uses an external name service. In Sprite, there is
no need for a third party name service when accessing files.

The overall structure of the architecture is shown in Figure 3-4. The different cases
underneath the naming interface handle local and remote pathnames. The different cases
underneath the I/O interface handle files, pipes, devices, and remote access (all remote
devices are treated identically on the client side). It is possible to name a remote device
with a local pathname, or a local device with a remote pathname; all combinations are
possible because the I/O and naming interfaces are independent.

Note that the term ‘‘object-specific’’ is used with both the naming and the I/O inter-
faces. With the naming interface, however, object-specific means ‘‘local pathname’’ as
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System Calls on Pathnames

Fs_AttachDisk(pathname, device, flags)
(mount, umount) Mount or dismount a disk on a file server.

Fs_ChangeDir(pathname)
(chdir) Change a process’s working directory.

Fs_CheckAccess(pathname)
(access) Verify access permissions on a pathname.

Fs_GetAttributes(pathname, attributes)
(stat) Return the attributes of an object.

Fs_SetAttributes(pathname, attributes)
(chmod, chown, utimes) Change the attributes of an object.

Fs_MakeDevice(pathname, devAttrs)
(mknod) Create a device file.

Fs_MakeDir(pathname)
(mkdir) Make a directory.

Fs_Remove(pathname)
(unlink) Remove a directory entry.

Fs_RemoveDir(pathname)
(rmdir) Remove a directory.

Fs_Rename(pathname, newname)
(rename) Change the name of an object from pathname to newname.

Fs_HardLink(pathname, linkname)
(link) Create another directory entry (linkname) for an existing object
(pathname).

Fs_SymLink(pathname, linkname)
(symlink) Create a symbolic link (linkname) to another name (pathname).

Fs_ReadLink(pathname)
(readlink) Read the value of a symbolic link.

Fs_Open(pathname, flags, mode, streamIDPtr)
(open) Create an I/O stream given a pathname.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3-1. Sprite system calls that operate on pathnames. The equivalent UNIX system
calls are given in parentheses.
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System Calls on I/O Streams

Fs_GetNewID(streamID, newID)
(dup, dup2) Create a new stream ID for an existing I/O stream.

Fs_GetAttributesID(streamID, attributes)
(fstat) Return the attributes of an object.

Fs_SetAttributesID(streamID, attributes)
(fchmod, fchown) Change the attributes of an object.

Fs_Read(streamID, buffer, numBytes)
(read) Read data from an I/O stream.

Fs_Write(streamID, buffer, numBytes)
(write) Write data to an I/O stream.

Fs_IOControl(streamID, cmd, inSize, inBuf, outSize, outBuf)
(ioctl, trunc, ftrunc, flock, fsync, lseek) Do an object-specific function.

Fs_Select(numStreams, readMask, writeMask, exceptMask, timeout)
(select) Wait for any of several I/O streams to become ready for I/O, or un-
til a timeout period has expired. The streams are specified by bitmasks
where each bit corresponds to a stream ID.

Fs_Close(streamID)
(close) Close an I/O stream.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3-2. Sprite system calls that operate on I/O streams. The equivalent UNIX sys-
tem calls are given in parentheses.
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Miscellaneous FS System Calls

Fs_Command(cmd, buffer, option)
General hook used for testing, debugging, and setting kernel parameters.

Fs_SetDefPerm(permissions)
(umask) Set the default permissions for newly created files.

Fs_CreatePipe(readStreamID, writeStreamID)
(pipe) Create a pipe are return two streamIDs corresponding to the reading
and writing ends of the pipe.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3-3. Miscellaneous Sprite system calls that pertain to the file system. The
equivalent UNIX system calls are given in parentheses.



32

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

modules

modules

specific
case

purpose
general

Remote File DeviceRemote Local Pipe

Network RPC Disk Devices

Naming Interface I/O Interface
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Figure 3-4. The modular organization of the file system architecture. There are two pri-
mary internal interfaces, one associated with operations on pathnames, and another asso-
ciated with operations on I/O streams. General-purpose modules invoke object-specific
modules through these interfaces, thus hiding the details associated with each case. Net-
work requests are also dispatched through the internal interfaces in order to completely
hide the use of RPC.

opposed to ‘‘remote pathname,’’ and the type of the object being named is not important.
With the I/O interface object-specific means ‘‘local file,’’ ‘‘remote device,’’ etc.

3.2.2. Remote Procedure Call

One can view the architecture’s internal interfaces as an interface between client
and server. The top-level routines above the interfaces are the ‘‘client’’ parts of the sys-
tem, and the low-level routines are the ‘‘servers’’ for various kinds of objects supported
by the system. With this viewpoint, the Remote Procedure Call (RPC) model provides a
natural way for top-level client routines to invoke remote service procedures (i.e., for
remote file or device access).

RPC fits into the naming and I/O interfaces as follows. In the remote case, the top-
level, general-purpose naming and I/O routines invoke RPC stub procedures through the
object-specific naming and I/O interfaces. These stubs package up their parameters into
messages and use a network RPC protocol to invoke the corresponding object-specific
procedure on the remote server. At the server, complementary RPC stub procedures call
through the internal naming and I/O interfaces to invoke the correct service procedure.
Note that the internal interface is used on both the client and the server to hide the details
associated with network RPC. The service procedures are invoked in the same way
whether they are called through the interface directly, or whether RPC has been used to
forward the operation from a remote client. Similarly, the top-level routines are the same
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whether they invoke the service procedure directly through the interface, or whether RPC
is used to forward the operation to the remote server.

Sprite uses a custom RPC protocol for kernel-to-kernel network
communication[Welch86a]. The network protocol handles the problems of lost network
messages by setting up timeouts and resending messages, if needed. Explicit ack-
nowledgment packets are eliminated, if possible, by using the Birrell-Nelson [Birrell84]
technique of implicit acknowledgments: a reply automatically acknowledges the
corresponding request, and a new request serves as the acknowledgment for the previous
reply. In most cases only two network messages are required, so there is low latency in
the protocol. To increase throughput, large data transfers are supported by using multiple
network packets. Finally, the Sprite RPC protocol guarantees that the remote procedure
will be executed at-most-once; if a communication failure occurs then the caller cannot
tell if the callee failed before or after execution of the remote procedure. Measurements
of the RPC performance are presented in Section 3.6.1.

3.3. Internal Data Structures

The detailed description of the architecture begins in this section with the data
structures that represent file system objects and the I/O streams between processes and
objects. These data structures represent the distributed state of the system. With this
information as a base, the internal naming and I/O interfaces are described in more detail
in Sections 3.4 and 3.5.

3.3.1. Object Descriptors

The central data structure in the architecture is an object descriptor. Object descrip-
tors are typed data structures that encapsulate the state of a particular object and are used
during operations on the object. The contents of an object descriptor are initialized and
manipulated only by the object-specific module that matches the type of the object
descriptor. Bugs can be patched and features can be added for one type of object without
breaking the implementation of other types of objects.

Each object descriptor begins with a descriptor ID that is composed of four fields.
The first field is a type that is used to dispatch through the internal I/O interface to dif-
ferent object-specific procedures. The types are given in Table 3-1. They correspond to
the different cases that the I/O interface has to accommodate. The second field in a
descriptor ID identifies the I/O server for the object. The explicit server ID facilitates the
use of RPC, and it also ensures that different I/O servers do not define the same descrip-
tor IDs. The third and fourth fields are for use by the I/O server to distinguish the object
descriptor from others of the same type.8

hhhhhhhhhhhhhhhhhhhhhhhhhhh
8 Within the Sprite code the term ‘‘I/O handle’’ is used instead of ‘‘object descriptor’’. Ob-

ject descriptors type definitions have names like ‘‘Fsio_FileIOHandle’’,
‘‘Fsio_DeviceIOHandle’’, and ‘‘Fsrmt_IOHandle’’.
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Object Descriptor Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

LOCAL_FILE A file on a local disk.
REMOTE_FILE A file on a remote disk.
LOCAL_DEVICE A local device.
REMOTE_DEVICE A device on a remote host.
LOCAL_PDEV A locally executing user-level server process.
REMOTE_PDEV A remote user-level server process.
LOCAL_PIPE A one-way byte stream between processes.
REMOTE_PIPE A pipe that is remote because of process migration.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 3-1. Object descriptor types used by the operating system. The corresponding
LOCAL and REMOTE types are used on the I/O server and remote clients, respectively.

The I/O server chooses its object descriptor IDs so that they are the always the same
for a particular object. Instead of being random UIDs, they are based on some property
of the object. Device servers, for example, embed the device type and device unit in a
device’s object descriptor ID. File servers put a disk number and file number into a file’s
object descriptor ID. The deterministic choice of an object descriptor ID is important for
two reasons. First, the recovery protocol described in Chapter 6 depends on this so that
clients can help server’s rebuild their internal state, which includes the contents of object
descriptors. Second, it is possible for a device to have more than one name (this is
described below in Section 3.4.1.2). By choosing the device’s object descriptor ID based
on the device type and unit number, the system ensures there is only one object descrip-
tor for the device, even if the device has multiple names.

An important property of the object descriptors used in Sprite is that there are com-
plementary LOCAL and REMOTE object descriptors for use on the I/O server and client,
respectively. This distinction supports a clean separation between object-specific pro-
cedures used by remote clients and those used on the I/O server. The server’s object-
specific procedures are only concerned with accessing the underlying object; they are not
littered with special cases against a remote object. The client’s object-specific pro-
cedures are concerned with efficiently forwarding the operation to the remote I/O server.
Note also that if the client and the I/O server are the same host, then only the LOCAL
object descriptor is used, and the local service procedures are accessed directly through
the I/O interface.

The association between the object descriptors on the client and the I/O server is
defined by the IDs of their corresponding object descriptors. The object descriptor IDs
differ only in their type and the remaining three fields are the same. This correspondence
means that clients pass descriptor IDs (not the whole descriptor) to the server, and the
server can locate its corresponding descriptor by converting the client’s type to a server
type (e.g., REMOTE_FILE to LOCAL_FILE). The conversion is done by general purpose
code on the server so that RPC stub procedures can be shared. The stubs take care of
locating the server’s descriptor and then they branch through the internal I/O interface to
object-specific service procedures.
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Code sharing among RPC stubs on the client is also possible because they are
invoked through the internal I/O interface. The REMOTE_DEVICE, REMOTE_PDEV, and
REMOTE_PIPE implementations all share the same RPC stub procedures. These stubs are
ultimately used by the REMOTE_FILE implementation, too, to read and write data to and
from the cache.

To summarize, an object descriptor encapsulates the information needed to access
an object. The type of the object descriptor indicates the particular case that applies to
the object, and this type is used to branch to object-specific implementations of the I/O
interface. The descriptors are tailored towards the different needs of the client and the
server. The I/O server keeps LOCAL object descriptors and its object-specific implemen-
tations access the underlying object directly. The remote clients keep REMOTE descrip-
tors and use RPC to forward operations to the I/O server, although object-specific optimi-
zations for the remote case are supported (e.g., use of the data cache during remote file
accesses). Object descriptor IDs are passed between clients and servers, and the RPC
stubs rely on a well-defined mapping between LOCAL and REMOTE descriptor types in
order to find their corresponding descriptor.

3.3.2. Stream Descriptors

An I/O stream between a process and an object is represented by the data structures
shown in Figure 3-5. For each process, the kernel keeps a stream table that contains
pointers to stream descriptors. Each stream descriptor references an object descriptor. A
stream descriptor is created by the Fs_Open system call, and a pointer to this descriptor is
put into the stream table. The index of the pointer in the stream table is returned to the
process as its handle on the I/O stream.

The stream descriptor provides a level of indirection between the process and the
object descriptor that is useful for three reasons. First, different processes may be using
an object in different ways (e.g., one for reading and one for writing). The intended (and
authorized) use of a stream is recorded in the stream descriptor and used to guard against
unauthorized use of the object. Second, processes may share an I/O stream as the result
of stream inheritance. A stream descriptor is created during the Fs_Open system call,
and this stream descriptor becomes shared when the stream is inherited by another pro-
cess. A reference count in the stream descriptor reflects this sharing. Third, sequential
access to an object is supported by maintaining the current access position in the stream
descriptor. Read and write operations advance the access position so that consecutive
operations on an I/O stream operate on sequential ranges of an object.

The Sprite data structures for an I/O stream are similar to those in UNIX9 except for
hhhhhhhhhhhhhhhhhhhhhhhhhhh

9 UNIX terminology is different, however. Instead of ‘‘stream table’’ UNIX uses ‘‘open file
table.’’ Instead of ‘‘stream descriptor’’ UNIX uses ‘‘open file descriptor.’’ Instead of ‘‘object
descriptor’’ UNIX uses ‘‘inode.’’ The Sprite architecture uses ‘‘stream’’ instead of ‘‘open file’’
to reflect that I/O streams can be connected to many different kinds of objects.
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Figure 3-5. The data structures that represent an I/O stream from a process to an object.
There are two levels of sharing possible. First, there may be many distinct streams to
the same object. Secondly, a stream may be shared by more than one process. In this
example there are three processes accessing the same device. Two of the processes are
sharing one stream, and a third is on the I/O server. The I/O server keeps a client list
with the object descriptor that records how different clients are using the object. Note
that the client list counts the number stream descriptors on each client, which can be dif-
ferent than the number of processes using the streams due to stream sharing.

two extensions related to remote clients. First, Sprite has corresponding LOCAL and
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REMOTE object descriptors as described above. Secondly, each LOCAL object descriptor
has a client list that the server uses to keep state about how its object is being used by
remote clients. Each client list entry counts the readable, writable, and executable I/O
streams that originate from each client, as well as information about file locks held by the
client. The per-client organization of this information is required for three reasons. First,
the Sprite file caching system has to know what clients are reading and writing files to
guarantee that clients see a consistent view of file data [Nelson88a]. Second, servers
disallow modification of files being used for an executable program image. Third, if a
client crashes then the I/O server can clean up after it by simulating close operations on
I/O streams from that client and releasing any file locks that it held.

3.3.3. Maintaining State About I/O Streams

This section describes the stream accounting information that the system keeps so
that the I/O server has an accurate view of the I/O streams to its objects. The accounting
information includes a reference count on stream descriptors, and usage counts in the
client list that count up the I/O streams used for reading, writing, and execution. These
are maintained according to the following invariants, which refer to Figure 3-5 for exam-
ples.10

g The reference count on a stream descriptor reflects use of the stream by local
processes. Stream #359 is shared by two processes on Client A, for example, so it
has a reference count of 2.

g Each client list entry counts the readable, writable, and executable I/O streams that
originate from that client. If a stream is used for more than one purpose (e.g., reading
and writing), then it is counted once for each use. The LOCAL_DEVICE object
descriptor in Figure 3-5 has two client list entries corresponding to the streams on
client A and on itself.

g There is a set of summary usage counts in a LOCAL object descriptor that represents
the total number of streams to the object, both local streams and remote streams.
This can be computed from the client list, but it is maintained separately in order to
simplify conflict checking and garbage collection of unused descriptors.

An important aspect of these data structures is that sharing of streams is not visible at the
object descriptor level; if a stream is shared among processes, then it still only counts as
one stream at the object level. Each process that is sharing the stream has the same
access permissions (e.g., reading and/or writing) so it does not matter how many different
processes share the stream. It is important to hide stream sharing from the object level
because it eliminates the need to communicate with the I/O server when new processes
share a stream. Otherwise, if the I/O server had to know about stream sharing, then every
process creation would suffer the cost of notifying the I/O server about new sharers of a
hhhhhhhhhhhhhhhhhhhhhhhhhhh

10 File lock information is also kept in the client list. It includes an exclusive lock bit and a
count of shared lock holders.
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stream.

The basic stream operations that affect the stream accounting state are described
below.

Fs_Open Fs_Open creates a stream descriptor with reference count equal to 1. The
object descriptor referenced by the stream has to be initialized or have its
usage counts incremented to reflect the new stream. If the stream is to a
REMOTE object descriptor then the corresponding LOCAL object descrip-
tor, and its client list, has to be updated.

Proc_Fork/Fs_GetNewID
These operations increment the reference count on a stream descriptor.
Proc_Fork creates a child process that shares all its parent’s streams.
Fs_GetNewID adds an additional reference from a process’s stream table
and returns a new handle (ID) for the stream. In either case, there is no
new stream descriptor so there is no need to change the stream usage
accounting on the object descriptor.

Fs_Close This decrements the reference count on the stream. If it is the last refer-
ence then the stream descriptor will be destroyed. In this case the stream
usage information in the object descriptor has to be decremented.

These operations imply that the I/O server sees every Fs_Open operation so that it can
keep track of all the I/O streams. Also, for each Fs_Open the I/O server will see one
Fs_Close. This is the fundamental difference between a stateful and a stateless system.
A stateless protocol such as NFS has no open and close operations, while a stateful pro-
tocol includes open and close so the server can maintain state about connections (I/O
streams) to its resources.

3.4. The Naming Interface

The internal naming interface is described in this section. The operations are simi-
lar to those found in other remote file systems. The novel aspects of the naming interface
mainly concern the way the name space is distributed among servers, and this is the topic
of Chapter 4. In this chapter it is sufficient to understand that a server exports a directory
in the global file system hierarchy to the rest of the network, and this causes all lookups
below that point in the hierarchy to be directed to the server. Chapter 4 describes the dis-
tributed name resolution mechanism in detail. The naming interface is described here
because it has some effect on the I/O interface described below.

There are two implementations of the naming interface: one for remote pathnames
and one for local pathnames. A client branches to the correct implementation after map-
ping the pathname argument of a system call into a server token and a relative pathname.
The server token is a descriptor ID for a directory exported by the server. The token
identifies the server and its type to the client, and the client uses the type to dispatch
through the internal naming interface. The server begins resolving the relative pathname
at the directory identified by the server token.
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The operations that compose the internal naming interface are described below.

NAME_OPEN(token, path, useflags, userIDs, type, permissions, results)
This operation is the first half of creating an I/O stream. The useflags parameter
indicates the manner in which the I/O stream will be used, whether the object
should be created if it does not exist, and other details that are not important here.
(A complete definition of flag bits can be found in Table D-5 in Appendix D.) The
type parameter is used to constrain the open to match a particular type (e.g., direc-
tory or pseudo-device), but a default value indicates that any type is acceptable.
(Types are defined in Table D-4 in Appendix D.) The userIDs authenticate the user
to the file server. The permissions define the access control on newly created
objects. NAME_OPEN returns results, which contains a descriptor ID and any other
information needed to complete the setup of the I/O stream. These are passed
through the IO_OPEN entry point in the I/O interface as described in Section 3.5.

GET_ATTRIBUTES(token, path, userIDs, attributes)
This returns the attributes of an object. The userIDs argument is used for authenti-
cation, and the object’s attributes are returned in the attributes parameter. This is
distinct from NAME_OPEN because NAME_OPEN includes some processing
associated with creating an I/O stream as explained below in Section 3.4.1.

SET_ATTRIBUTES(token, path, userIDs, attributes, flags)
This changes the attributes of an object. Different attributes (access permissions,
ownership, etc.) are changed in different situations, and the flags parameter con-
tains bits that indicate which fields of the attributes parameter should be applied to
the object’s attributes.

MAKE_DEVICE(token, path, userIDs, devattrs)
Create a special file that represents a device. The devattrs parameter specifies the
device type, unit number, and the I/O server. Section 3.4.1.2 describes a special
‘‘localhost’’ value that can be used for a device’s I/O server. This maps the device
file to the instance of the device on the client.

MAKE_DIR(token, path, userIDs, permissions)
Create a directory with the given permissions.

REMOVE(token, path, userIDs)
Remove an entry from a directory. This applies to all objects except directories.
An important side effect of removing a directory entry for regular files is that files
are removed from disk after all names that reference them have been removed (see
HARD_LINK).

REMOVE_DIR(token, path, userIDs)
Remove a directory. It must be empty for this to succeed.

HARD_LINK(token1, path1, token2, path2, userIDs)
Create an additional name (path2) for an existing object (path1). This creates a new
directory entry that references the existing object.

RENAME(token1, path1, token2, path2, userIDs)
Change path1 to path2. This is implemented on the file servers by first making a
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hard link (path2) and then removing the original name (path1). RENAME is expli-
cit in the naming interface so that the servers can implement this sequence atomi-
cally.

SYM_LINK(token1, path1, token2, path2, userIDs)
Create a symbolic link (path1) to another pathname (path2).

Note that there is implicit context in the system call interface that is made explicit in the
internal naming interface. The implicit context includes user authentication information,
for example, and it also includes the token that identifies the server. It is important to
make all information explicit so the naming operations can be passed around to remote
servers.

3.4.1. Structure of the Open Operation

The Fs_Open operation, which creates an I/O stream, is divided into two parts,
NAME_OPEN and IO_OPEN, to permit different servers for the naming and I/O inter-
faces. This is shown in Figure 3-6. However, to optimize the important case of opening
regular files, in which case there is only a single server, the NAME_OPEN procedure is
allowed to do some object-specific setup for the I/O stream that gets created by the
IO_OPEN procedure. (IO_OPEN is the initialization procedure in the object-specific I/O
interface, and it is described in more detail in Section 3.5.) This distinguishes
NAME_OPEN from GET_ATTRIBUTES, which just returns attributes of the object and
has no side-effects. Enough processing is done during NAME_OPEN on a regular file so
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Figure 3-6. The flow of control during an Fs_Open operation. The arrows indicate invo-
cation of the name resolution and the I/O open phases on the file server and the I/O
server, respectively. In the most general case these operations are invoked using net-
work RPC.
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the client does not have to contact the file server a second time during the IO_OPEN
phase. This is an example of how using the file system name space as the name service
provides an advantage over an external name service.

There is special-case processing that can be done during NAME_OPEN for other
types of objects as well. This is performed by a name open procedure that is invoked on
the file server after it has resolved a pathname to a particular file and obtained its
LOCAL_FILE descriptor. There are currently three implementations of the name open pro-
cedure, one for files, devices, and pseudo-devices. The proper procedure is invoked
based on a file-type attribute kept in the LOCAL_FILE object descriptor. The name open
procedure is passed the LOCAL_FILE object descriptor and an indication of how the client
will use the object. The name open procedure examines the attributes of the file to deter-
mine the proper object descriptor ID for the client and any other information needed dur-
ing the IO_OPEN operation. The descriptor ID indicates the I/O server and the specific
case that applies to the client (e.g., LOCAL_DEVICE, REMOTE_DEVICE, REMOTE_FILE,
etc.). Thus, the name open procedure maps a file into a descriptor ID for the underlying
object, and it extracts any object-specific attributes needed to create an I/O stream to the
object. This is an example of the tight coupling between the naming and I/O halves of
the file system.

3.4.1.1. Opening Files

The main job of the FileNameOpen procedure is to invoke the cache consistency
mechanism. The cache consistency routines compare the intended use of the file with
existing uses of the file that are recorded in the LOCAL_FILE descriptor client list. Cache
control messages are issued as needed, and FileNameOpen completes after other clients
complete their consistency actions (e.g., writing back dirty data to the server).
FileNameOpen updates the client list to reflect the new client so there is no need for the
client to contact the file server (again) during the IO_OPEN operation. The client only
has to create (or update) its own REMOTE_FILE descriptor.

3.4.1.2. Opening Devices

The main job of the DeviceNameOpen procedure is to determine the case (local or
remote) that applies to the client. Each device file has an attribute that identifies the I/O
server for the device, and the relative location of the client and the I/O server determines
if client’s descriptor ID should be of type REMOTE_DEVICE or LOCAL_DEVICE. Note that
these descriptors are distinct from the LOCAL_FILE object descriptor associated with the
device file that names the device. These different descriptors are shown in Figure 3-7.
There has to be a distinct descriptor for a device and its name because devices can be
located on any host, not just the file server that keeps their name (the device file). It is
also possible for more than one device file to name the same underlying device, and the
use of different object descriptors for the name and the device means that there is still
only a single LOCAL_DEVICE descriptor for a device.
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Figure 3-7. The object descriptors involved with remote device access. The file server
resolves a name to an object descriptor for a LOCAL_FILE. In this case the file is a place-
holder for a device, and the file attributes indicate the I/O server and the type of the dev-
ice. The client sets up a REMOTE_DEVICE object descriptor, the I/O server sets up a
LOCAL_DEVICE object descriptor.

There are two potential problems with device files in a distributed system. The first
is that programs developed for a stand-alone system expect the device files in the ‘‘/dev’’
directory to be for local devices, but the ‘‘/dev’’ directory is shared by all hosts. The
second problem is that if every device on every host requires a device file then there can
be are large number of device files that are tedious to manage. These two problems are
addressed in Sprite by the addition of special ‘‘localhost’’ device files that correspond to
the local instance of a device. These files can be shared by all hosts, which reduces the
number of device files needed in a large system.

The ‘‘localhost’’ device files are trivially implemented by using a distinguished
value of the I/O server ID to indicate ‘‘localhost’’. This special value has the effect of
mapping the device file to the client’s instance of the device. If the opening process has
migrated, then its original host is used as the I/O server so that process migration remains
transparent. Thus, there are two kinds of device files in Sprite: one has a specific host for
the I/O server attribute, and the other has a special ‘‘localhost’’ I/O server attribute.

3.5. The I/O Interface

The interface to the I/O operations is based on object descriptors. The type in the
object descriptor ID is used to branch to the correct instance of the I/O operation, and the
object descriptor is passed through the I/O interface. The I/O interface is similar to those
in other systems, except for the way blocking I/O is done and the way that object attri-
butes are handled. These issues are discussed after the interface is described.
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IO_OPEN(descriptorID, objectData, useflags, descriptor)
The IO_OPEN procedure completes the setup of an object descriptor. The descrip-
torID and objectData parameters are the results of a NAME_OPEN operation. The
useflags indicate how the object will be used, i.e. for reading and/or writing. The
result of IO_OPEN is descriptor, which has been initialized and is ready for I/O. In
the case of a remote client, IO_OPEN may involve an RPC to the I/O server so it
can initialize (or update) its object descriptor. As mentioned above, this RPC is
optimized away for the REMOTE_FILE case.

CLOSE(descriptor, useflags)
End use of an object. This is called when an I/O stream is being destroyed. There
may be many I/O streams active to the same object descriptor, and CLOSE just
represents the destruction of a single stream. The useflags parameter indicates the
manner in which the I/O stream was being used.

CLIENT_VERIFY(clientDescriptorID, clientID, serverDescriptor)
The CLIENT_VERIFY routine is used on each RPC, and it has two main purposes.
The first is to convert from a client’s object descriptor ID to the server’s correspond-
ing object descriptor. Conversion is done by mapping the type in the client’s
descriptor ID to the corresponding server-side type (e.g., from REMOTE_FILE to
LOCAL_FILE) and then looking up the server’s descriptor based on the new object
descriptor ID. The second function of this procedure is to verify that the client is
known to the server. Verification is done by checking the client list on the server’s
descriptor.

READ(descriptor, processID, offset, buffer, count, signal)
Read data from an object. The input parameters indicate a byte offset, byte count, a
buffer for the data, and the client process’s ID. The count parameter is modified to
indicate how much data, if any, was read. READ returns a status code as its func-
tion value. If EWOULDBLOCK is returned then it indicates that no more data is avail-
able from the object at this time (some data may have been returned). In this case
processID has to be saved by the I/O server for use in a notification message after
the object has data ready. (This is discussed in more detail below.) End-of-file con-
ditions are indicated by a SUCCESS status and zero bytes returned. Some objects
cause software signals to be generated in exceptional conditions. This can be
achieved by returning GEN_ABORTED_BY_SIGNAL and a signal value.

WRITE(descriptor, processID, offset, buffer, count, signal)
Write data to an object. The input and result parameters are the same as for READ.
This writes zero or more bytes, up to the amount specified by count. Upon return,
count is modified to indicate how much data was accepted by the underlying object.
If a short count is returned then more WRITE operations are made until all the
user’s data is transferred, unless EWOULDBLOCK is returned. EWOULDBLOCK is
handled as described for the READ operation. GEN_ABORTED_BY_SIGNAL and a
signal value can also be returned.

IOCTL(descriptor, cmd, processID, format, inBuf, inSize, outBuf, outSize, signal)
Perform a special operation (cmd) on an object. A generic set of IOCTL commands
are defined by the system, and the object implementation is free to define any other
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IOCTL commands it needs. The processID is available so the I/O server can imple-
ment blocking operations by returning EWOULDBLOCK and saving the processID for
later notification. A signal can also be returned in order to give the I/O server com-
plete flexibility. The size and contents of the input and output buffers are dependent
on cmd. The format parameter indicates the byte-ordering and alignment format of
the client host. The IOCTL procedure has to fix up the input and output buffers if
the I/O server has a different format than the client. This issue is discussed in more
detail in Section 3.5.2.

SELECT(descriptor, events, processID)
Poll an object for readability, writability, and exceptional conditions. The events
parameter is an input and output parameter. On entry it indicates which of the three
conditions are of interest, and on exit it indicates which of the conditions currently
apply to the object. If the object is not ready for one of the requested conditions
then processID is saved for notification when the object changes to a ready state.

IO_GET_ATTR(descriptor, attributes)
Get the attributes of an object. The attributes is both an input and result parameter.
On input it contains the attributes as recorded by the file server. IO_GET_ATTR
can update any attributes (i.e. the access and modify times) for which it has more
current values.

IO_SET_ATTR(descriptor, attributes)
Set the attributes of an object. As with IO_GET_ATTR, the file server has already
been contacted to change the attributes on long-term storage. This routine updates
whatever attributes the I/O server maintains while an object is in use, typically the
access and modify times.

3.5.1. Blocking I/O

Remote device access introduces a waiting problem that is not present with remote
files. Files have bounded access times so it is feasible to block the service procedure on
the file server until the I/O operation completes. Devices, pipes, and pseudo-devices, in
contrast, have indefinite access times. Blocking the service procedure indefinitely at the
I/O server would tie up RPC server processes, and these might be a limited resource.
Interrupting the I/O operation would be complicated because the remote RPC server
would have to be interrupted. The Fs_Select operation adds a further complication. The
streams being selected may be connected to objects located all around the network. In
this case it would not be appropriate to wait at the I/O server for any particular I/O
stream because some other I/O stream may become ready first.

These problems can be avoided by returning control to the client if an I/O operation
(or SELECT) would block. A special return code, EWOULDBLOCK, is returned to indi-
cate this situation. This return code is interpreted by general-purpose routines which
block the process in this case. A callback from the I/O server is required when its object
is finally ready for I/O. In terms of the architecture, this approach means that the object-
specific I/O routines do not block indefinitely. The only action taken by the object-
specific module during a blocking I/O is to record the client process’s ID so it can be
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notified later. The process is then blocked in the top-level Fs_Read, Fs_Write, or
Fs_Select procedure. These top-level procedures retry their calls through the I/O inter-
face after a notification message arrives from the I/O server.

The implementation of this blocking approach has to guard against a race condition
between a process’s decision to wait and notification messages from the I/O servers. The
message traffic during a remote wait is shown in Figure 3-8. The notification message
could arrive before the reply with the EWOULDBLOCK error code. If the early notification
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Figure 3-8. Message traffic during a blocking I/O. Control is returned to the client if an
I/O operation would block. There is a potential race condition between the EWOULD-
BLOCK reply message and the notification message from the I/O server.
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were ignored then the client might block forever. The race can occur during Fs_Select if
an I/O server notifies the client while it is still polling other I/O servers. The race can
occur during Fs_Read and Fs_Write if network messages are lost or reordered.

A simple algorithm is used to detect early notifications. Each process’s state
includes a notify bit that is cleared before the process begins its decision to block. The
notify bit is set when a notification arrives. When a process finally decides it ought to
wait, the kernel’s waiting primitives check for the notify bit. If it is set it indicates that a
notification has arrived early, and the process is not blocked. The process clears its
notify bit and retries its operation. The retry loop is shown in Figure 3-9. A form of this
loop is used in the top-level procedures Fs_Read, Fs_Write, Fs_IOControl, and
Fs_Select.

3.5.2. Data Format

Sprite supports a heterogeneous network, one where clients and servers can be of
different machine architectures. The main problem this causes concerns data representa-
tion, or byte-ordering. There are, for example, two main ways to arrange a four-byte
integer in memory. There are also alignment policies that affect the layout of more com-
plex data structures. When clients and servers with different data formats communicate,
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done = FALSE
while (done == FALSE) {

/* begin critical section */
ClearNotifyBit();
/* end critical section */

status = BlockingOperation();

/* begin critical section */
if ((status == EWOULDBLOCK) AND NotifyBitIsClear()) {

WaitForNotication();
} else {

done = TRUE
}
/* end critical section */

}
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Figure 3-9. The basic structure of a wait loop. Manipulation of the notify bit and block-
ing the process is done inside a critical section in order to synchronize with notification
messages.
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some measures need to be taken to resolve these differences. One approach is to always
convert every network message into a canonical format. This conversion is done in
SunOS with its XDR (eXternal Data Representation) protocol. However, this approach
adds overhead when the client and server have the same data format.

Sprite limits the format of network messages to make data format conversion easy,
and it only does conversion when needed. This approach can be taken because network
communication is done by the kernel using a small set of RPCs. RPC messages are
divided into a header and two data parts. The first data part can contain an array of
integers, while the second data part contains an uninterpreted block of data. The first part
is sufficient for the simple data structures passed among kernels, and the second part is
used for character strings (i.e. file names) and raw file data. The Sprite RPC protocol
automatically reformats the first data part of network messages if the client and server
have different formats. This case is detected by examining a header field with a well-
known value. If the value is in the wrong format, then the packet is reformated.

The only case where this approach does not work is with the input and output
buffers used in IOCTL. A device or service is free to define new IOCTL commands and
their associated inputs and outputs. The RPC system does not know the format of the
input and output buffers. This data is put into the unformated part of network messages
and the data format conversion is left up to the IOCTL procedure.

3.5.3. Object Attributes

While most attributes are kept by the file servers, the I/O server for a device updates
the access and modify times while a device is in use. Instead of having the I/O server
constantly push these attributes back to the file server, the client contacts both the file
server and the I/O server during Fs_GetAttributes and Fs_SetAttributes. The client
invokes the file server via the GET_ATTRIBUTES or SET_ATTRIBUTES operation to
manipulate the attributes kept there. These routines also invoke the object-specific name
open procedure (i.e. FileNameOpen or DeviceNameOpen) to compute a descriptor ID
which is returned to the client. The client uses the type of the descriptor ID to invoke an
IO_GET_ATTRS or IO_SET_ATTRS procedure to complete the operation with the I/O
server.

Attributes can be manipulated via an I/O stream to the object as well as by an
object’s name. Both cases are structured the same way: first the file server is contacted to
get most of the attributes, and then the I/O server is contacted to get the current access
and modify times. When an I/O stream is closed the I/O server pushes its versions of the
access and modify times back to the file server for long term storage. In order to contact
the file server the LOCAL_FILE descriptor ID corresponding to the name must be known to
the client and the I/O server. This name ID is one of the results of the NAME_OPEN
procedure. The client saves the name ID in its stream descriptor and the I/O server saves
it in its object descriptor. (In the current implementation a device I/O server does not
really save the name ID nor does it push the access and modify times back to the file
server, but it should. This omission means that access and modify times of devices are
only correct when they are open.)
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Remote files have a slightly different problem regarding attributes. Caching by
remote clients means that the file server may not have the most up-to-date access and
modify times. However, instead of having one client contact all the other clients that
cache the file, this is done by the file server because it can consult the file’s client list to
see what clients should be contacted. Currently the file server avoids fetching the access
time of a file that is being executed because these files are heavily shared and it is not
possible to determine exactly when a program image is referenced; the access time of an
actively executed process is reported as ‘‘now’’. In the future we may avoid fetching
access times from other clients altogether because this is a rarely used attribute. The
modify time, on the other hand, is much more important, and delayed write caching on
the clients means that the server may not have the most recent modify dates. However,
in this case there is only one client that can be caching dirty data (this is a property of the
Sprite cache consistency scheme[Nelson88a]) so the server only has to contact one other
client.

An alternative implementation for remote devices would be to have clients maintain
modify and access times instead of the I/O server. This approach is similar to what
currently happens with regular files. If this alternative were implemented then clients
would only contact the file server during attribute operations. The file server would
make callbacks to the other clients using the object to get the current access and modify
times. This approach adds extra state to the file servers. In the current implementation,
for example, the file servers do not record which clients are using a remote device. The
device’s I/O server records this information instead.

3.6. Measurements

This section of the chapter presents measurements of the RPC performance and the
RPC traffic in the system, and it gives a size breakdown of the various modules in the file
system implementation.

3.6.1. RPC Performance

Figure 3-10 shows the performance of the Sprite RPC protocol when sending data
blocks of various sizes from one kernel to another. The base cost of an RPC is higher on
a Sun-3 because it has a slower CPU (i.e., 2 MIPS as opposed to 12-13 MIPS). The
latency of a null RPC is about 1 msec on the DECstation and SparcStations, and about
2.45 msec on the Sun-3/75 workstation. This is about the same as the time it takes to
switch back and forth between two user processes on the same host, so remote kernel
operations are not too expensive. The incremental cost of sending more data in an RPC
is not much different between machine types, which indicates that the time spent in the
network interface hardware and on the network itself becomes dominant. The incremen-
tal cost for the DECstations is higher because the network interface does not have direct-
memory-access (DMA). It takes additional CPU cycles to copy data in and out of the
network interface. Large bandwidths are achieved by sending large data blocks. Multi-
ple packets are used to ‘‘blast’’ the data block to the receiver, which returns a single
packet in response [Zwaenepoel85]. Multiple packets are reflected by jumps in the graph
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Figure 3-10. Performance of the Sprite kernel-to-kernel RPC network protocol on a 10
Mbit Ethernet. Graph (a) gives the time to transfer a data block from one kernel to
another. Graph (b) shows the corresponding data bandwidths. The jumps in the graph
reflect the use of additional network packets to transfer the data. The ‘‘sun3’’ line is for
Sun-3/75 workstations, which are rated at 2 MIPS and have an Intel 82586 Ethernet con-
troller. The ‘‘sun4’’ line is for SparcStation-1 workstations, which are rated at 12 MIPS
and have an AMD Am7990 Lance Ethernet controller. The ‘‘ds3100’’ line is for DECs-
tation 3100 workstations, which are rated at 13 MIPS and also have the Lance Ethernet
controller.

when an additional ethernet packet has been used to transfer the data block. The max-
imum capacity of the 10 Mbit Ethernet is about 1200 Kbytes/sec. With 16 Kbyte blocks
a Sun-3/75 attains 60% of this maximum, and the SparcStations attain 75%. Ordinarily
Sprite transfers 4 Kbyte blocks because that is the file system’s block size. The latency
and bandwidth for a 4 Kbyte block is 7.2 msec and 570 Kbytes/sec (4.5 Mbits/sec) on a
Sun-3/75, and they are 5.37 msec and 745 Kbytes/sec (5.9 Mbits/sec) on a SparcStation.

3.6.2. RPC Traffic

The measurements presented in this sub-section are based on statistics taken from
the system as it is used for day-to-day work by a variety of users. The raw data is in the
form of counters that are maintained in the kernel and periodically sampled. File servers
were sampled hourly, while the clients were sampled 6 times each day. The study period
began July 8, 1989 and ended December 22, 1989.

The RPC traffic rate on all four file servers combined is shown in Figure 3-11.
(Similar graphs for the individual servers are given in Appendix B.) Each line in the
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Figure 3-11. RPC traffic throughout the day for the combination of all four file servers.
The servers were measured from July 8 through December 22, 1989. The lines for each
RPC are cumulative, so the rate for each RPC is given by the difference between two
lines. The top line represents the total RPC traffic.

graph is cumulative, so the difference between two adjacent lines gives the rate for the
RPC that labels the upper line. The line labeled ‘‘other’’ also represents the total RPC
traffic of the servers. The traffic represents sustained load as opposed to peak values
because the statistics were sampled every hour and then averaged over months of
activity. The traffic in the early morning hours gives a measure of background activity.
The echo RPCs are generated by the host monitor module described in Chapter 6. The
rest of the background stems from system daemons. Currently this load is rather high.
Steps will need to be taken to reduce this load if we want to scale the system from its
current size of 40-50 hosts up to our target of 500 hosts. For example, once a minute a
daemon on each host updates a host status database, which is used by our process migra-
tion facility. Each update requires a number of file system operations in order to lock a
record, read the old value, update the value, and unlock the record. Ioctl is used for lock-
ing. The nightly dumps are visible as the peak in stat (i.e., GET_ATTRIBUTES) RPCs.
The reason there are more open than close RPCs is because of failed lookups and
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artifacts of the name resolution protocol, which will be described and measured in
Chapter 4.

3.6.3. Other Components of the Architecture

This chapter has focused on the naming and I/O interfaces between the top-level file
system routines and the object-specific modules, and the way that remote access is sup-
ported. There are also major modules in the architecture associated with the block cache,
cache consistency, the disk sub-system, local name lookup, distributed name lookup, and
pseudo-file-systems and pseudo-devices. The sizes of these modules are given in Table
3-2. Of these modules, the block cache, disk sub-system and local name lookup are rela-
tively straight-forward implementations of concepts present in stand-alone UNIX. The
block cache defines its own back-end interface so it can be used for both local and remote
files, and perhaps it will be extended for other uses in the future (e.g., pseudo-file-
systems). Most of the other file system components are unique to Sprite. The cache con-
sistency module is described in detail in Nelson’s thesis[Nelson88b]. Chapter 4 will
describe the distributed naming module, and Chapter 7 will describe pseudo-file-systems
and pseudo-devices. The ‘‘utility’’ module listed in the table includes routines that
manage the table of object descriptors, and it includes the recovery protocol for the
descriptors that is described in Chapter 6.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Size Comparison of FS Modulesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Module Procedures Linesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Top level FS interface 82 13.8% 6301 14.3%
Object-specific (files pipes devices) 95 16.0% 5879 13.3%
Remote access 80 13.4% 5678 12.9%
Pseudo-file-systems and pseudo-devices 68 11.4% 5559 12.6%
Data block cache 62 10.4% 4672 10.6%
Disk management 53 8.9% 4557 10.3%
Local name lookup 27 4.5% 3577 8.1%
Utility routines 64 10.8% 3222 7.3%
Cache consistency 35 5.9% 2528 5.7%
Distributed naming (prefix tables) 29 4.9% 2078 4.7%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 595 44051iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3-2. The number of procedures and lines of code in the modules that make up the
file system implementation. About half of the lines are comments, and these are includ-
ed in the line counts.
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3.7. Comparison with Other Architectures

The Sprite file system architecture is similar to three UNIX-based architectures: the
SunOS vnode architecture [Kleiman86]; the Ultrix gnode architecture [Rodriguez86];
and the AT&T file system switch (FSS) architecture [Rifkin86]. These are all generaliza-
tions of the original UNIX file system architecture. In each system, an internal interface
was added below which file-system-specific dependencies are hidden. Different imple-
mentations of the internal interface allow for different file systems to be integrated
together into one system as viewed by the user. There are two main differences between
Sprite and these architectures. The first concerns remote device access, and the second
concerns the way the distributed name space is implemented. Remote device access is
discussed here, and the next chapter describes the Sprite naming mechanism and com-
pares it with the UNIX-based approaches used by these other architectures.

The other architectures are oriented towards regular file access, and they make some
assumptions that preclude the general remote device access provided in Sprite. The
major assumption is that there is one server that assumes the role of the file server and
(by assumption) the Sprite I/O server. Under this assumption it may be possible to
access a remote device on the file server, but not on a different host (i.e., another works-
tation). Accessing a remote device on a file server is possible with the RFS file system
protocol, which has been implemented in the FSS and vnode architectures[Chartock87].
However, there has to be distinct a ‘‘/dev’’ directory for each server so that the name for
a device and the device itself are implemented by the same server.

The vnode and gnode architectures provide a way to access a local device that is
named by a remote file server. This kind of access is needed to support diskless worksta-
tions. In this case, the equivalent of the Sprite IO_OPEN operation can ‘‘clone’’ a new
descriptor from the descriptor returned from the file server, with the new descriptor being
used for local device access. However, this still does not necessarily support the general
three-party situation support by the Sprite architecture where a third host is the I/O server
for the device.

Perhaps the stickiest issue related to remote device access concerns blocking I/O.
Sprite provides a general blocking I/O mechanism that even applies to SELECT on dev-
ices on different hosts. In contrast, the other architectures allow the object-specific pro-
cedures to block indefinitely. To avoid using up all the server processes in RFS, for
example, the last available server process is prevented from blocking by aborting an I/O
request that would block. Also, SELECT is not supported in AT&T UNIX (which uses
RFS), so the issue of having to wait on local and remote devices simultaneously is
avoided. NFS, which is the remote file protocol used with the vnode and gnode architec-
ture, does not support remote device access, so these architectures have also avoided this
issue.

LOCUS is another UNIX-based distributed system. However, LOCUS does not
define an internal interface that can be used to hide special-case processing. Instead,
remote access was coded specially for each file system operation. One of the points in
Walker’s thesis [Walker83b], for example, was how different remote operations in
LOCUS were implemented with specialized message protocols. While SELECT is sup-
ported in LOCUS, there is no description of how they address the races associated with
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remote devices. Also, remote device access in LOCUS is coded within each device
driver, while it is implemented by general-purpose code in Sprite. To be fair, the main
focus of LOCUS was file replication and location transparency, not a software architec-
ture. The LOCUS implementers modified an existing UNIX implementation as a fast
route towards experimentation with file replication, and they did that before any of the
UNIX-based architectures described above were introduced.

3.8. Summary and Conclusions

The architecture presented here is organized around two main internal interfaces,
one for naming operations and one for I/O. These interfaces hide the special-case pro-
cessing needed to support remote servers and different kinds of objects (i.e. files, devices,
pipes, pseudo-devices). The use of distinct interfaces for naming and I/O enables the file
servers to implement a name space that is used for non-file objects like devices. A file
server can implement the naming interface for devices, while other hosts can implement
the I/O operations for devices. The architecture supports our environment of diskless
workstations; these hosts have devices like displays, printers, and even tape drives, but
they do not have to implement any part of the name space so they can run diskless.

Remote access is implemented in a general way in the architecture, and this is hid-
den by the internal interfaces. Clients invoke RPC stub procedures through the interface,
and on the server complementary RPC stubs call through the interface to invoke the ser-
vice procedures. This approach means that the stubs can be shared by different object
implementations (i.e., pipes and devices), and the service procedures are not littered with
special case checks against the remote case.

The architecture supports state on the servers about I/O streams from remote clients.
This state is used to support the caching system, it is used to implement exclusive access
to devices, and it is used to prevent modification of files that are being used as program
images. The state is maintained during Fs_Open and Fs_Close operations; there is no
need to inform the server when I/O streams become shared due to stream inheritance.
The way this state is recovered after server crashes is the topic of Chapter 6.

Remote blocking I/O operations are also supported by the architecture. A callback
approach is used where I/O servers call back to a client that has been blocked. This frees
up server processes while the client waits, and it supports Fs_Select operations on objects
that are scattered around the network. The implementation of the callback has a potential
race condition between a process’s decision to wait and a notification message from a
remote server. This race is guarded against by remembering early notifications and sur-
rounding blocking operations with a retry loop.

With this architecture as a framework, the remaining chapters consider some addi-
tional problems in more detail. These include name resolution in a system with many file
servers (Chapter 4), the effects of process migration on the architecture (Chapter 5), and
the failure recovery system for stateful servers (Chapter 6). Chapter 7 describes how
user-level server processes can implement the internal naming and I/O interfaces in order
to extend the basic functionality provided by the distributed file system with arbitrary,
user-supplied services.
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CHAPTER 4

Distributed Name Resolution:
Prefix Tables

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4.1. Introduction

This chapter considers the problem of name resolution in a distributed system com-
posed of many servers, both Sprite file servers and pseudo-file-system servers. The goal
of the naming mechanism described here is to hide the underlying distribution of the sys-
tem. The result is that users and applications are presented with a single hierarchical
name space that does not reflect its partitioning among servers, nor does the name space
change when viewed from different hosts. All Sprite hosts share the same location tran-
sparent name space. Names do not reflect the location of an object, and the name of an
object is the same throughout the network.

The hierarchical structure of the file system name space provides a natural way to
partition it among servers. Each server implements a sub-tree of the hierarchy, and the
sub-trees are combined into a global hierarchy. Sprite uses a system based on prefix
tables and remote links to partition the name space [Welch86b]. Prefix tables on the
clients provide a hint as to the server for the sub-tree identified by the prefix. Remote
links are special files that indicate where other sub-trees are attached. Both the prefix
tables and remote links are transparent to applications, so a single, seamless hierarchy is
presented. The Sprite prefix mechanism has performance and administrative advantages
over variants of the UNIX mount mechanism used in other systems, and it also differs
substantially from the prefix mechanism used in the V-system.

The rest of this chapter is organized as follows. Section 4.2 describes the name
resolution mechanism in stand-alone UNIX. Section 4.3 describes how this has been
extended for use in a network by other systems, and points out drawbacks of this
approach. Section 4.4 describes Sprite’s prefix table mechanism. Section 4.5 presents
measurements of the effectiveness of the system. Section 4.6 compares the Sprite prefix
table mechanism with other prefix-based name resolution systems. Section 4.7 concludes
the chapter.

4.2. Name Resolution in Stand-alone UNIX

The stand-alone UNIX directory searching algorithm is described here to provide a
basis for the following discussion of distributed name resolution. There are three key



55

points to the UNIX lookup algorithm.

(1) Component-at-a-time-lookup. A pathname is processed one component at a
time in an iterative manner. The current directory in the pathname is scanned for
the next component. The current directory is initialized to the root directory in
the case of absolute pathnames (e.g., ‘‘/a/b/c’’), or to the process’s working
directory in the case of relative pathnames (e.g., ‘‘a/b/c’’). The lookup ter-
minates when the final component is found in its directory, or access to a com-
ponent of the path is denied.

(2) Directory format. Each directory contains a list of entries, with each entry con-
sisting of a component and an identifier for a disk-resident descriptor. The
identifier is a disk-relative index into the set of descriptors on the disk. When a
component is found during lookup, its descriptor is fetched from disk so that its
type and access permissions can be checked. This structure means that direc-
tories only reference objects on their own disk, so each disk has a self-contained
hierarchical directory structure. Descriptors have a type such as file, directory,
symbolic link, or device. Descriptors store other attributes of their object, includ-
ing access permissions and the location of the object’s data on disk.

(3) Mount tables. Hierarchical directory structures on different disks are combined
into a single hierarchy with a mount mechanism. A main-memory mount table
defines what directory structure contains the overall root, and it contains zero or
more additional entries that define a connection between a leaf directory in one
hierarchy and the root directory of another. The leaf directories named in the
mount table are called mount points. When the lookup procedure encounters a
mount point, the current directory is shifted to the root of the mounted directory
structure before searching for the next component. The converse has to be done
when traveling up the hierarchy due to parent directory (‘‘..’’) components. In
this case the mount table is used to switch the current directory from the root of
one hierarchy back to the directory it is mounted on before the current directory
is advanced to the parent. For example, if ‘‘/a/b’’ is a mount point, then the
lookup of ‘‘/a/b/..’’ will cross the mount point twice, once when processing com-
ponent ‘‘b,’’ and a second time when processing the parent directory.

4.3. Remote Mounts

While the UNIX lookup mechanism was designed for a stand-alone system, it has
been extended for use in a distributed file system. The mount table is extended to iden-
tify the server for a directory structure, and an additional mechanism is added for resolv-
ing pathname components in a remote directory structure. There are three different
approaches to resolving remote components, which are described below.

The lowest level approach, which is used in LOCUS[Popek85], is to modify the
routines that read directories to fetch them from the remote server instead of a local disk.
Directories are cached in the main-memory file data cache, just as they are in UNIX, to
avoid repeated remote operations[Sheltzer86]. LOCUS includes a cache consistency
mechanism so that cached directories reflect additions and deletions made by other hosts.
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The interface between client and server is low level. Server directories are directly mani-
pulated by remote clients. The advantage of this interface is that the bulk of the directory
lookup code from stand-alone UNIX remains unchanged. (LOCUS was implemented as
a direct modification of UNIX.) The disadvantage is that all hosts must agree on the
directory format, and modifying a directory incurs the cost of the cache consistency
mechanism.

A slightly higher level approach, which is used in NFS[Sandberg85], is to send a
component and a directory identifier to the remote server, which returns an identifier for
the component if it finds the component within that directory. This interface between
client and server is higher-level than the corresponding interface in LOCUS because the
directory format is hidden from the clients. Servers scan their own directories, and they
do their own directory modifications. The interface makes it easier to use NFS between
different kinds of systems. A disadvantage of this approach, however, is that there can
be many remote operations to resolve a pathname, one for each component. A cache of
recent lookup results is kept by NFS clients so they can avoid some server operations.
However, there is no cache consistency scheme in NFS so clients must refresh their
lookup caches every few seconds, and it is still possible for them to use an out-of-date
cache entry.

The highest level approach, which is used in RFS[Rifkin86], is to send the remain-
ing pathname to the server when a remote mount point is reached. The RFS server
processes as many components as it can and returns an identifier if it completes the
lookup, or the remaining pathname if a ‘‘..’’ component caused the lookup to cross back
over the mount point. The advantage of this approach is that it reduces the number of
remote server operations. Only in diabolical cases where pathnames cross many mount
points will there be many remote operations, and in these cases NFS would have at least
as many remote operations (ignoring the NFS lookup cache). Another advantage is that
there is no need for a directory consistency mechanism because the server does all its
own modifications of the directory structure.

There is one overall disadvantage of the remote mount approach, however. Each
host is free to define its own mount points so there is no guarantee that each host sees the
same name space. This is a legacy of stand-alone UNIX where the mount table is initial-
ized from a file on a local disk. In remote mount schemes, each host has its own mount
table file and therefore each host defines its own name space. For example, host A could
mount a directory structure under ‘‘/x’’, while host B could mount the same directory
structure under ‘‘/r/s’’. This means that objects in the directory structure can have dif-
ferent names (e.g., ‘‘/x/a/b/c’’ vs. ‘‘/r/s/a/b/c’’) depending on which host is being used.
In a network of workstations it is much better if each host sees the exact same name
space so it does not matter which workstation is used. Achieving consistency of the
name space with a remote mount scheme requires coordinated changes on all hosts in the
network. Each host must update its mount table file and reinitialize its kernel data struc-
tures (perhaps by rebooting).

A common approach to this problem is to implement some sort of replicated data-
base that defines the global mount configuration. A replicated database is used in
LOCUS, the Andrew File System (AFS) [Satyanarayanan85], and others. However,
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replication is a heavy-weight approach that requires coordinated changes on many hosts.
The Sprite prefix table mechanism, which is described next, takes a lighter-weight
approach to name space consistency that is based on caching and lazy update.

4.4. Prefix Tables

Sprite uses a prefix table mechanism to distribute the file system hierarchy over
multiple servers. It is similar in function to the UNIX mount mechanism. It combines
the directory structures on different disks, called domains, into a global hierarchy. With
a mount mechanism, however, each host defines its own organization of different
domains into an overall hierarchy, and lookup is done one component at a time while
checking for mount points. With the Sprite prefix table mechanism, each domain is
identified by a server-defined prefix that is the pathname to the root of the domain. Path-
name lookup is divided into a prefix match, which is done by clients, and the resolution
of a relative pathname, which is done by servers. Each host keeps a table of valid
prefixes, and these tables are kept up-to-date using a broadcast-based protocol.

4.4.1. Using Prefix Tables

During file open and other operations that require name resolution, a client com-
pares the pathname to its prefix table and selects the longest matching prefix. The long-
est prefix has to be chosen to allow for nesting of domains, as illustrated in Figure 4-1.
For example, the prefixes ‘‘/’’, ‘‘/users’’, and ‘‘/users/sprite’’ all match on the pathname
‘‘/users/sprite/brent’’. The longest matching prefix, ‘‘/users/sprite’’, determines the
correct domain. The client strips off the prefix and sends the remaining pathname to the
server indicated by the matching prefix table entry. The server resolves as much of the
pathname as possible. If it resolves the whole pathname the server performs the
requested operation (e.g., NAME_OPEN, REMOVE, etc.).

A server may not be able to process the whole pathname, however, because a path-
name can take an arbitrary path through the global hierarchy and cross through many dif-
ferent server domains. If a pathname leaves a server’s domain, the server returns the
remaining pathname to the client. Returning a pathname is called pathname redirection,
and the three cases for pathname redirection are described below in Section 4.4.3.
Redirection results in an iterative lookup algorithm where the client applies the remain-
ing pathname to the prefix table on each iteration in order to determine the next server to
use. Control is returned to the client each iteration so that servers do not have to forward
operations to other servers.

Note that a prefix match can cause the upper levels of the hierarchy to be bypassed
during lookup. For example, our network has the server configuration given in Table 4-
2. A lookup in domain ‘‘/sprite/src/kernel’’ is sent directly to server Allspice, and the
three domains above it (‘‘/’’, ‘‘/sprite’’, and ‘‘/sprite/src’’) are bypassed. Bypassing
directories reduces the load on the other servers. With remote mounts, in contrast, every
component in an absolute pathname is processed so the upper levels of the directory
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Figure 4-1. This figure shows the file system hierarchy and a prefix table that partitions
the hierarchy into four domains. The distribution is transparent to applications. The
server’s ID and a token that identifies the domain are kept in the prefix table.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sprite Domains in Berkeleyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Server Prefix Kbytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint ‘‘/’’ 7820
Oregano ‘‘/a’’ 264096
Oregano ‘‘/b’’ 243936
Oregano ‘‘/c’’ 300696
Allspice ‘‘/mic’’ 625680
Assault ‘‘/dist’’ 278520
Allspice ‘‘/swap1’’ 275808
Allspice ‘‘/user1’’ 305184
Assault ‘‘/user2’’ 293832
Mint ‘‘/sprite’’ 366160
Allspice ‘‘/sprite/src’’ 627520
Allspice ‘‘/sprite/src/kernel’’ 627520iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 4-2. The Sprite domains in the Berkeley network. There are four file servers and
12 domains, which are shown here in order of increasing prefix length. Not shown are
some smaller domains used for testing, and the pseudo-file-system domains that
correspond to NFS file servers.

hierarchy are heavily used.

Bypassing the upper levels of the hierarchy with a prefix match also causes the
access controls on the upper levels to be bypassed. All processes implicitly have search
permission on the path to each domain. This lack of access control is not a problem in
our environment, and it would require a per-process prefix table to close this loop-hole.
Per-process access controls could be checked as a process’s prefix table is initialized.
However, a per-process prefix table would be less efficient than a kernel-resident prefix
table. First, extra storage would be required because the prefix tables would not be
shared. Second, extra processing would be required to initialize the prefix table for each
new process. As described below, initialization involves a broadcast protocol so it is
more efficient to share a prefix table among all processes and amortize the initialization
cost over a larger number of naming operations.

The interface to the server is based on a relative pathname and a token. The token
comes from the matching prefix table entry, and the relative pathname is obtained by
stripping off the prefix. If the client already has a relative pathname, the token associated
with the working directory is used. The tokens are descriptor IDs as defined in Chapter
3. They include a type, a server ID, and some server-defined information that identifies a
directory. The token is used by the client to identify the server and its type. The type is
used to branch through the internal naming interface to routines that access the server.
The token is used by the server to determine at which directory to begin resolving the
relative pathname. Prefix table initialization is described below.
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4.4.2. Maintaining Prefix Tables

Clients initialize their prefix tables using a broadcast protocol. To create a new
prefix table entry, a client broadcasts a prefix, and the server for the prefix, if any,
responds with a token that corresponds to the prefix. The token is the descriptor ID for
the root directory of the server’s domain. The client saves the token in the prefix table
entry and uses it as described above.

Prefix tables are maintained as a cache. Each entry is used only as a hint, which
facilitates changing the server configuration. If the server for a prefix changes, out-of-
date prefix table entries are updated by clients the next time they use them. In this case, a
client gets an error (‘‘invalid token’’) when it uses the out-of-date prefix table entry, and
it rebroadcasts to determine the new server. This lazy update approach eliminates the
need for a complex distributed protocol to update the clients’ prefix tables. Also, servers
do not have to keep track of other servers, so there is no special inter-server protocol
either. This technique applies to future lookup operations, but it does not help if the
server for an open I/O stream changes. Chapter 6 describes how the file system’s
recovery protocol could be used to handle this problem.

A client learns about prefixes as a side-effect of pathname redirection. A client ini-
tializes its prefix table with ‘‘/’’, the prefix for the root of the hierarchy, and it broadcasts
to locate the root server during system initialization. The root prefix matches on all path-
names so initially the client will direct all lookups to the root server. During pathname
lookup, the root server will encounter a special file, called a remote link, at the point
where another domain begins (in UNIX terminology, this is called a mount point). A
remote link is similar to a UNIX symbolic link except that it contains a prefix and indi-
cates that pathnames that cross the link are in another domain. The server combines the
remaining pathname and the value in the remote link to create a new absolute pathname.
It returns this expanded pathname to the client along with an indication of how much of
the pathname is a valid prefix. The client adds the prefix to its table, broadcasts to locate
the next server, and reiterates its lookup procedure. In this way, a client gradually adds
entries to its prefix table as it accesses different parts of the file system hierarchy.

For example, suppose there is a domain identified by the prefix ‘‘/users’’, as shown
in Figure 4-2, but the client only has ‘‘/’’ in its prefix table. The first time a client uses
the pathname ‘‘/users/sprite/brent’’ it matches on ‘‘/’’, and ‘‘users/sprite/brent’’ is sent to
the root server. The root server looks for the component ‘‘users’’ in its root directory and
finds that it is a remote link with value ‘‘/users’’. The server expands the remote link to
produce ‘‘/users/sprite/brent’’. This pathname is returned to the client along with an
indication that ‘‘/users’’ is a valid prefix. The client adds ‘‘/users’’ to its prefix table,
broadcasts to locate its server and get the token, and reiterates its lookup algorithm. On
the next iteration ‘‘/users/sprite/brent’’ matches on ‘‘/users’’, and ‘‘sprite/brent’’ will be
sent to the server for this other domain. Thus, the lookup iterates back and forth between
the client and various servers as the pathname moves through different domains; there is
no server-to-server forwarding of lookups.
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Figure 4-2. An example of a remote link. This file hierarchy is divided into two
domains, ‘‘/’’ and ‘‘/users’’. The root directory contains a remote link that identifies the
‘‘/users’’ domain.

4.4.3. Domain Crossings

In the most general case a pathname can cross through many different domains
before it terminates. There are three cases the system has to handle: 1) a pathname can
descend into a domain from above, 2) a pathname can ascend out of a domain from
below, or 3) a pathname can jump back to the root via a symbolic link to an absolute
pathname. Descending into domains is detected when remote links are encountered, as
described above. This case occurs if a client has not discovered the corresponding prefix,
or if the lookup of a relative pathname begins in one domain and descends into another.
In the latter case the server may return a prefix that the client already knows about, but
this causes no problems.

Pathnames ascend out of a domain when they include ‘‘..’’, the parent directory.
Each time the server processes a ‘‘..’’ component it checks to make sure it is not at the
root of its domain. The way the server detects this situation is described below. If the
server is at the root of its domain and the next component is ‘‘..’’, it returns the remaining
name to the client. The client generates an absolute pathname using the domain’s prefix
and the returned name. For example, if the server for domain ‘‘/a/b’’ returns ‘‘../x/y’’,
the client combines these into ‘‘/a/b/../x/y’’, which further reduces to ‘‘/a/x/y’’. This
pathname will no longer match on the prefix ‘‘/a/b’’, so the client will chose a different
server for the next iteration.11

A symbolic link to an absolute pathname causes a jump to an arbitrary point in the
hierarchy. The server expands the link and returns a new absolute pathname to the client.
hhhhhhhhhhhhhhhhhhhhhhhhhhh

11 It would also be possible for the server to generate the new absolute pathname. That the
client does this is a legacy of an earlier implementation where the server could not always tell
what prefix a client had used.
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This case is similar to the redirection that occurs when a remote link is encountered,
except that no prefix information is returned to the client.

4.4.4. Optimizing Cross-Domain Symbolic Links

The measurements presented below will show that the bulk of pathname redirec-
tions in our environment stem from symbolic links between domains. The cross-domain
links are artifacts of disk space limitations. Often several small directory structures are
grouped together into one domain (i.e., one disk), and symbolic links are used to give the
directory structures, or sub-domains, proper names. For example, in our network we
have sub-domains corresponding to ‘‘/emacs’’ and ‘‘/X11R3’’, which store the source
code and binary files for these software systems. We cannot afford to dedicate a whole
domain to these directory structures, so we put them together into one domain (e.g.,
‘‘/a’’). There are symbolic links from ‘‘/emacs’’ to ‘‘/a/emacs’’ and from ‘‘/X11R3’’ to
‘‘/a/X11R3’’. The unfortunate consequence of these symbolic links is that every lookup
under ‘‘/emacs’’ or ‘‘/X11R3’’ will cause a pathname redirection. The lookup goes to
the root server, which encounters the symbolic link and expands it (e.g., to ‘‘/a/emacs’’).
The root server redirects the pathname back to the client, and the client issues the lookup
to the correct server. Another significant example from our network is that ‘‘/tmp’’ was
a cross-domain symbolic link to ‘‘/c/tmp’’. Consequently, all lookups of temporary files
suffered a redirection.

It is possible to eliminate redirection in these cases by defining a new domain that
corresponds to the target of the symbolic link. In our example, the server for ‘‘/c’’ can
also export a sub-domain under the prefix ‘‘/tmp’’. The token associated with this prefix
corresponds to the ‘‘/c/tmp’’ directory. The symbolic link from ‘‘/tmp’’ to ‘‘/c/tmp’’ is
replaced with a remote link having the value ‘‘/tmp’’. The remote link causes clients to
add ‘‘/tmp’’ to their prefix tables, and when they broadcast this prefix, the server returns
the token corresponding to ‘‘/c/tmp’’. Future lookups will not require a broadcast or a
redirection, and the server will resolve pathnames by starting at the ‘‘/c/tmp’’ sub-
directory.

In effect, this approach caches the result of expanding the symbolic link in the
client’s prefix table. It would be possible to cache the expansion of all absolute symbolic
links like this. The server would expand the symbolic link and return it to the client as it
does now, and the client would broadcast to get a token for the target of the symbolic
link. The client would add the link’s pathname (e.g., ‘‘/tmp’’) to its prefix table along
with the token for the target of the link (.i.e ‘‘/c/tmp’’). The main problem with this trick
is that it bypasses the access controls on the path to the target of the link. A naive user
could create a symbolic link into his directory structure and open it up to all other users.
Because of this access control problem, domains are defined by system administrators by
setting up the appropriate remote links and configuring the servers to respond to broad-
casts for particular prefixes.

Exporting a subdirectory (‘‘/c/tmp’’) as a prefix (‘‘/tmp’’) makes it slightly more
complicated for the server to detect when a ‘‘..’’ component is leaving a domain. It is not
sufficient for the server to check against the primary root of a domain (‘‘/c’’); the root of
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the domain depends on what prefix the client used. In our example, when the user is in
the ‘‘/c/tmp’’ directory, the parent directory is either ‘‘/c’’ or ‘‘/’’. The client has to
identify two directories, the root directory for the domain and the starting directory for
the pathname within the domain. Both directories are identified with tokens. If the client
begins with an absolute pathname, the two tokens are the same. If the client begins with
a relative pathname, one token corresponds to the working directory, and the root token
corresponds to the prefix used when establishing the working directory itself. For exam-
ple, when a process sets its working directory to ‘‘/c/tmp’’, the prefix that this name
matched on (e.g., ‘‘/c’’) is remembered along with the token returned for ‘‘/c/tmp’’. On
a subsequent lookup of a relative pathname the client sends the token for working direc-
tory ‘‘/c/tmp’’ to indicate where to start the lookup, and the token for the prefix ‘‘/c’’ to
indicate the root.

4.4.5. Different Types of Servers

The location of the server (e.g., local or remote) is indicated by the type of the token
in the prefix table. This type is used to invoke the correct service procedure in each itera-
tion of the algorithm. The different cases are hidden from the top-level procedures that
use the prefix table by the naming interface defined in Chapter 3. In the local case (i.e.,
on the file servers), the service procedures use a directory scanning algorithm much like
the UNIX algorithm described in Section 4.2. The only modification is additional sup-
port for remote links and pathname redirection, and there is no use of a mount table. In
the remote case a client uses RPC to invoke these service procedures on the file server.
In a third case, described in Chapter 7, the naming operation is forwarded to a user-level
server process.

4.4.6. The Sprite Lookup Algorithm

The features of the naming mechanism are summarized by the following lookup
algorithm. The inputs to the algorithm are a pathname and per-process state information
that indicates the working directory and user authentication information used for access
control. The results of the algorithm depend on the particular naming operation. Opera-
tions like REMOVE and MKDIR change the directory structure and are implemented as
the last part of resolving the name. In these cases the result is simply an error code.
Other operations like NAME_OPEN and GET_ATTRIBUTES return information about
the named object. These operations have been described in detail in Chapter 3. The
resolution algorithm proceeds as follows.

(1) If a pathname is absolute, the longest matching prefix determines the server. The
prefix is stripped off and the token associated with the prefix is obtained.

(2) If the pathname is relative, it is unaltered and the token that identifies the work-
ing directory is obtained.

(3) The server is given the relative name and the token that identifies the starting
directory of the relative name. The server follows the pathname through the
directory structure on its disks. If the pathname terminates in the server’s
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domain, it performs the requested naming operation (e.g., NAME_OPEN,
REMOVE, MKDIR, etc.).

(4) If the pathname leaves the server’s domain, the server returns a new pathname
and possibly a prefix to the client in a pathname redirection.

(5) The client updates its prefix table, if needed. If the prefix is new to the client, it
broadcasts to locate the prefix’s server and obtain the token for the domain. The
client restarts the lookup at step 1 with a new absolute pathname. The new path-
name will match on a different prefix so the lookup will eventually complete.
(Symbolic links can create circularities in the directory structure. The client
guards against these by limiting the number of redirections that can occur in a
single lookup.)

4.4.7. Operations on Two Pathnames

A more complicated iteration over the prefix table may be required with operations
that involve two pathnames (i.e., HARD_LINK and RENAME), but in the best case
these can be done with a single server operation. The idea is that both pathnames (and
their starting directory tokens) are sent to the same server, and in the best case the server
can complete the operation. However, either or both of the pathnames might leave the
server’s domain and cause pathname redirection. In this case the client must reiterate
over its prefix table as described below.

The HARD_LINK and RENAME operations require their two pathnames to lie in
the same domain. HARD_LINK creates a new directory entry that references an existing
object. The identifier in a directory is domain-relative, so it is impossible to create a
‘‘hard’’ link to another domain. (Symbolic links reference an object by name so there is
no restriction on the target of a symbolic link.) RENAME is used to change the name of
an object without copying it. RENAME makes a link to the object under the new name,
and then deletes the original directory entry for the object. Thus, both of these operations
fail if the two pathnames are not in the same domain.

The algorithm used for HARD_LINK and RENAME proceeds as follows. It has to
handle redirections involving both pathnames, plus it has to detect when the two path-
names terminate in different domains.

(1) The prefix table is used to determine the server for the two pathnames. Both
pathnames, and their associated prefix tokens, are sent to the server of the first
pathname. In the best case both pathnames are entirely within this server’s
domain and the operation completes.

(2) If the first pathname leaves the server’s domain, the server returns a new name to
the client and does no processing of the second pathname. The client then res-
tarts at step 1, updating its prefix table if needed.

(3) If the first pathname terminates in the server’s domain, but the second pathname
leaves the server’s domain (or it does not even begin in the server’s domain), the
server returns a ‘‘cross domain’’ error.
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(4) At this point the client has to verify the error. It is still possible that the second
pathname can end up back in the same domain as the first pathname. This condi-
tion is tested by looking up the parent directory of the second pathname using a
regular GET_ATTRIBUTES operation. The pathname of the parent is computed
simply by trimming off the last component of the second pathname. The parent
is checked in order to avoid ambiguous errors that can arise when checking the
second pathname directly. With HARD_LINK, for example, the second path-
name typically does not exist, so a lookup would return ‘‘file-not-found.’’ This
may or may not mean the operation can complete, whereas a ‘‘file-not-found’’ on
the parent directory definitely means the operation cannot succeed.

(5) If the parent directory of the second pathname is in the same domain as the first
pathname then the client restarts at step 1. By this time the iterations between
various servers have expanded both pathnames fully and established enough
prefix table entries to direct both pathnames to the same server. Otherwise, if the
second pathname is in a different domain, the operation cannot complete and the
‘‘cross domain’’ error is returned to the user.

An alternative approach to these two operations would be to build them up from
low-level operations. However, this approach requires more than one server operation,
even in the best case. It also requires that the server keep some state between low-level
operations. This makes it more difficult for the server to implement HARD_LINK and
RENAME atomically; it has to handle error cases where the client gets part way through
the operation and then crashes.

4.4.8. Pros and Cons of the Prefix Table System

The prefix table system described here has four main advantages.

(1) Simple Clients. The client side of the lookup algorithm is simple, and diskless
clients are easily supported. A client only has to be able to match prefixes,
reiterate a lookup after pathname redirection, and broadcast to locate servers.
The details of the directory format and symbolic link expansion are hidden from
clients.

(2) Name Space Consistency. Servers export a domain under the same prefix to all
clients so all clients have the same view of the file system name space. It does
not matter what workstation a user uses. File servers share the name space so
system administration chores can be done on any host. Servers do not have to
worry about consistency of directories when they are updated because directories
are private to the server.

(3) Dynamic Reconfiguration. It is easy to change the configuration of the system
because clients’ prefix tables are refreshed automatically. Adding a new domain
requires the addition of a remote link and updating the server’s set of exported
domains. No system-wide reconfiguration procedure is needed.

(4) Efficient Lookups. Most lookups are performed with a single server operation.
The prefix match bypasses the upper levels of the hierarchy, reducing traffic to
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the root server.

There are three main disadvantages to this system:

(1) No Name Caching. Clients contact a server for every lookup operation. There
are cases where clients open the same files many times in a short period of time,
and caching lookup results would help reduce server traffic. However, a lookup
cache adds complexity to both the client (which now has to use the cache) and
the server (which has to ensure that client caches remain consistent). The data
cache consistency algorithm also depends on seeing every open and close, and it
would need to be modified to account for name lookup caching. While we con-
sidered adding a name cache, we avoided it because of the additional complexity
it would add to the system.

(2) Broadcast. The use of broadcast limits a Sprite file system to a local area net-
work capable of broadcast.12 Mechanisms used in widely distributed name ser-
vices could be employed to address this limitation [Oppen83][Lampson86].
However, there are more issues than the mechanisms of server location that have
to be addressed for large scale distribution of the file system. In particular, sys-
tem administration will require cooperation among the various groups using the
system. Security and access will be more important issues as the user community
gets larger. Basically, there is a whole step up in complexity associated with
very large scale distribution that is not addressed in this dissertation.

(3) Availability. Failure of a server can prevent a client from getting new prefixes
so some name lookups may not work until the server is restarted. (This recovery
is handled automatically, as described in Chapter 6.) Availability of the system
could be improved by replicating important domains, such as the root domain or
the domain containing system programs. However, replication requires some
mechanism to update the replicated domains, and some interserver negotiation to
decide who will service what clients. Replication would add complexity to the
implementation, and possible overhead to ordinary operations, so it has been
avoided. However, as Sprite is scaled to larger networks in the future, the issue
of replication may have to be addressed.

4.5. Measurements

A number of statistics are maintained by the hosts in our Sprite network, which shed
insight on the effectiveness of the prefix table system. These statistics were sampled
hhhhhhhhhhhhhhhhhhhhhhhhhhh

12 Currently, Sprite does support sharing of domains between hosts not reachable by broad-
cast, which is necessary because a few Sprite machines are in a remote laboratory. However, our
current solution is rather crude and it ought to be replaced. We have added the capability to pre-
define the server for a prefix. In this case, the server is contacted directly the first time the prefix
entry is used, and broadcast is not used. This feature was the quickest and simplest way to sup-
port distant machines, but it suffers from the maintenance problems of a remote mount system.
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every hour (day and night) on the file servers and 6 times during the day on the clients
(every three hours from 8:00 AM to 10:00 PM). The samples were taken from July 8
through December 22, 1989. The configuration of the file servers during this time is
given in Table 4-3. The most heavily used server averages over 1 million RPC requests
each day, so the data presented here are averages over many millions of operations.
More detailed tables of the results presented in this Chapter are presented in Appendix B,
Section 3.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

File Server Configurationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Name Model Memory Disk Capacity File Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mint Sun-3/180 16 Mbytes 300 Mbytes Root and commands.
Oregano Sun-3/140 16 Mbytes 900 Mbytes /tmp and source code.
Allspice Sun-4/280 128 Mbytes 2400 Mbytes User files and source code.
Assault DECStation 3100 24 Mbytes 600 Mbytes User files.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 4-3. The configuration of file servers during the study period. Mint has the root
directory and most commands and system-related files. Allspice has most of the source
code for the system, user files, and swap directories. Oregano has /tmp and some
sources. Assault has user files.

4.5.1. Server Lookup Statistics

The average length of the pathnames processed by servers is between 2 and 3 com-
ponents per pathname. Looking up a whole pathname with one RPC saves as much as 2
to 3 times the RPC traffic over a lookup system that does lookup one component at a
time, depending on the effectiveness of a component name cache. Also, these average
lengths do not count the components that matched on the client’s prefix table, so there is
even more savings over a component-at-a-time lookup.

The lookup traffic for the file servers is presented in Figure 4-3. The rates show a
peak during the nightly dumps, and a hump during the daytime hours. A per-month and
per-server breakdown of these statistics is given in Appendix B.

Almost 20% of all pathnames are not found. This percentage does not count the
number of times a file was newly created. These failed lookups are an artifact of the
directory search paths used by our compilers and command interpreters. A search path is
a list of directories in which to look for commonly used files like command programs and
compiler include files. Search paths let users specify files and commands with relative
names (e.g., ‘‘ls’’ vs. ‘‘/sprite/cmds/ls’’). However, search paths also cause many failed
lookups.

There is a significant rate of pathname redirections. About 13.5% of all lookups are
redirected due to absolute symbolic links. Only 0.04% of all lookups are redirected due
to remote links, and only 0.15% of all lookups are redirected due to leaving a domain via
the parent of its root. Thus, the remote links are effective in loading the clients’ prefix
tables, and it is rare that a domain is entered or left via a relative name. The redirections
due to absolute symbolic links are mainly due to a number of auxiliary commands
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Figure 4-3. Lookup rates for the combination of all four file servers. The servers were
measured from July 8 through December 22, 1989. Rates are shown for the total look-
ups, failed lookups (file-not-found), symbolic links traversed, pathname redirections,
and open-for-create.

directories (e.g., ‘‘/emacs’’) that are accessed via symbolic links. We should be able to
reduce the number of redirections caused by these symbolic links by exporting their tar-
get directory under a prefix, as described above in Section 4.4.4.

4.5.2. Client Lookup Statistics

Clients recorded the number of absolute and relative pathnames that passed through
the naming interface, and the number of lookup requests that were redirected. These
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Figure 4-4. Lookup rates for 35 clients combined. The lookups are divided into those
on absolute and relative pathnames. The rate of pathname redirections is also shown.
These rates were computed from July 8 through Dec 22, 1989. Clients were sampled
every three hours from 8:00 AM to 11:00 PM.

results are given in Figure 4-4. A per-client breakdown of lookup rates is given in
Appendix B. Overall, 71% of the pathnames looked up by clients were absolute. This is
due to command execution and traffic to system files like sources and libraries. If we
assume that most pathnames are outside the root domain (the small size of the root
domain precludes keeping much there), then the root directory is usually bypassed by the
prefix match or the use of a relative name. Also, given the relatively short pathnames
processed by the server, the elimination of even a single component by the prefix match
significantly cuts the processing done by the servers.
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4.6. Related Work

This section contrasts the Sprite prefix table mechanism with other distributed name
lookup systems.

4.6.1. Remote Mounts

The differences between Sprite prefix tables and remote mount schemes should be
apparent from the above descriptions of the two mechanisms. The primary advantage of
Sprite prefix tables over remote mount schemes is that they ensure a consistent name
space because the server defines the prefixes. In contrast, in a remote mount scheme the
client decides where a remote file system is mounted into its own name space. An extra
mechanism is required to ensure consistency of mount tables, such as the network
configuration protocol used in LOCUS[Popek85].

4.6.2. Prefix Based Systems

The V-system has a general naming protocol that uses prefix tables[Cheriton89].
Prefixes in V are used to identify different types of servers (e.g., print servers, file
servers, device servers). A system-wide name service is used to register server processes
under prefixes. Prefixes are explicit in V-system names (e.g., ‘‘service]rest-of-name’’,
where ‘]’ is a reserved character), so the mechanism cannot be used to transparently dis-
tribute a file system hierarchy. Instead, a client’s prefix table is used as a cache of results
obtained from the name service.

The Andrew[Satyanarayanan85] and Echo[Hisgen89] file systems use prefix tables
to distribute a file system hierarchy as in Sprite. However, these systems use a replicated
name service to store the global configuration of the system so they can distribute their
file systems over a wide area network. Ubik [Kazar89], which is used in Andrew, is a
special purpose database that only allows one update at a time. This assumes that the file
server configuration changes infrequently. The name service used by Echo[Lampson86]
allows concurrent updates, but it provides eventual consistency of the name space.
Updates are propagated as soon as possible, and the system guarantees that all name
servers will eventually have the same information. This approach assumes that users will
tolerate brief inconsistencies in the view of distant parts of the system.

The Sprite prefix table mechanism differs from V in that it provides transparent dis-
tribution, and it differs from Andrew and Echo because it is optimized towards the local
area network environment. The Sprite naming protocol is unique in its use of remote
links to trigger pathname redirection and define domain prefixes; it does not require the
complexity of a replicated database.

4.7. Summary and Conclusion

This chapter has described a name resolution system based on prefix tables and
remote links. There are a number attractive features of the system.
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g It supports simple clients (i.e., diskless workstations).

g It ensures a consistent view of the name space on all hosts.

g It is easy to manage because prefix tables are automatically updated when the
configuration of the system changes.

g It reduces the load on the servers for the upper levels of the hierarchy because the
prefix match bypasses them.

The measurements from our system indicate that remote links are effective in load-
ing the prefix tables. In only 0.04% of the server lookups were remote links encountered.
Similarly, leaving a domain via its root is also rare; it happened in 0.15% of the lookups.
However, 17.03% of the pathnames traversed a symbolic link, and 13.52% of the path-
names were redirected because of a cross-domain link. The large amount of redirections
from symbolic links suggests that we can further optimize our domain structure by
exporting important subdirectories like ‘‘/emacs’’ and ‘‘/X11R3’’ as sub-domains instead
of accessing them via symbolic links.

To conclude, the prefix table mechanism is a simple mechanism that is used to tran-
sparently distribute the file system’s hierarchical name space across the network. The
mechanism is really a simple name service that is closely integrated with the regular
name lookup mechanisms used in traditional, stand-alone file systems. The prefix table
is implemented as a thin layer on top of the routines that manage a directory structure on
the local disk. However, the clean split into the client and server parts of the system
make it possible to merge the directory structures maintained on different servers into a
single hierarchy shared by all the clients.
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CHAPTER 5

Process Migration and the File System
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5.1. Introduction

Process migration is the movement of actively executing processes between hosts
[Douglis87]. We use migration daily in our system to move compute- and file-intensive
jobs from our personal workstations to other workstations that are idle. A migrated pro-
cess can continue to use I/O streams to file system objects and open new I/O streams
using the same names it would have used before it migrated. There is no need to copy
files between hosts or to restrict access to devices because of the remote access facilities
of the file system and the shared file system name space. Thus, the combination of pro-
cess migration and the shared file system allow us to exploit the processing power avail-
able in our network.

When a process migrates, it is necessary to migrate its open I/O streams, which is a
complex procedure. The precise state that the file servers keep to support caching and
crash recovery has to be maintained during migration. Updating this state requires coor-
dinated actions at the I/O server and the two clients involved in migration. In addition,
the procedure has to be serialized properly with state changes due to other operations.
The locking done during migration has to mesh correctly with the locking done by other
operations, otherwise deadlock can result. This chapter describes the deadlock-free algo-
rithm by which I/O streams are transferred to new hosts.

Migration can cause streams to be shared by processes on different hosts, and addi-
tional state is required to support the semantics of the shared stream in this case. The
current access position of the stream is shared by the processes sharing a stream. In the
absence of migration, the shared offset is supported by keeping the access position in the
stream descriptor and sharing the stream descriptor among processes. Migration can
cause processes on different hosts to need access to the shared stream access position.
This chapter describes a mechanism based on shadow stream descriptors that is used to
maintain the shared access position. A client’s stream descriptor is bypassed and the
server’s shadow stream descriptor is used when the stream is shared by processes on dif-
ferent hosts.

The remainder of this chapter is organized as follows. Section 5.2 explains the
problem of stream sharing in more detail and describes the use of shadow stream descrip-
tors to solve it. Section 5.3 describes a deadlock-free algorithm to update the file
system’s distributed state during migration. Section 5.3 discusses the cost of migration to
the file system, and Section 5.4 concludes the chapter.
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5.2. The Shared Stream Problem

If two processes share a stream, I/O operations by either process update the stream’s
current access position. Normally the access position is kept in the stream descriptor,
and all processes sharing the stream reference this same descriptor. Now, suppose one
process migrates to another host. One reference to the stream descriptor migrates to a
new host, while other references remain on the original host. Some mechanism must be
added to the system to support the shared stream access position among processes on dif-
ferent hosts.

One approach, which is used in LOCUS, is to circulate a stream token among the
different hosts sharing the stream[Popek85].13 The token represents ownership of the
stream, and it has to be present on a client before an application can use the stream. If
the token is not present then the I/O server is contacted, and it retrieves the token from
the current owner. In this case, there is an additional overhead of 2 RPCs every time the
stream changes ownership. Also, if a client is writing to the stream, any data it has writ-
ten has to be flushed back to the I/O server when it gives up the token. LOCUS uses a
token circulation scheme for cache consistency, as well. Associated with each file is one
write token and one or more read tokens, and the LOCUS I/O server is in charge of fairly
circulating the stream token, read tokens, and write token among clients.

The other approach, which is used in Sprite, is to keep the stream access position at
the I/O server in a shadow stream descriptor when the stream is shared. In this case, I/O
operations go through to the server because it keeps the current stream access position.
This approach requires an RPC on each I/O, but there is no need for callbacks from the
I/O server to other clients. The shadow stream solution parallels the technique that Sprite
uses for consistent data caching. The problem in data caching is to keep the cached data
consistent with other copies cached elsewhere. To simplify data cache consistency, the
local data cache is bypassed if a file is being write-shared by processes on different hosts.
Similarly, the local stream descriptor can be thought of as a cache for the stream’s access
position. When a stream is shared by processes on different hosts, the local stream
descriptor has to be bypassed to get the most up-to-date stream access position. These
two cases are treated identically by the implementation, so the effects of stream sharing
on the data caching mechanism are very small in terms of additional code complexity.
Thus, Sprite bypasses the local cache during sharing, while LOCUS circulates a token to
represent ownership, and it always accesses the local cache.

The amount of message traffic required with the Sprite scheme will be less if the
stream is heavily shared, even if the stream is read-only. In Sprite, each I/O would
require one RPC. In LOCUS, each I/O would require 2 RPCs to retrieve the token (one
from the client to the server and one from the server to the other client that holds the
token), and perhaps an additional RPC to fetch the data if it is not in the cache. This
comparison assumes the worst case for LOCUS where processes on different hosts
hhhhhhhhhhhhhhhhhhhhhhhhhhh

13 The term ‘‘offset’’ token is used in [Popek85], not ‘‘stream’’ token. Offset is another
term for the current access position of the stream.
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interleave their use of the I/O stream. On the other hand, if the stream is really only used
by one of the processes that shares it, the LOCUS scheme may have less message traffic.
Once that process obtains ownership of the stream, it can continue to do I/O without
RPCs, assuming that all the data for the stream is in the local cache. Finally, if the I/O
stream is to a device and not a file, then Sprite’s scheme will always require less message
traffic. The I/O operations always have to go through to the device’s I/O server, so there
is no benefit from caching the stream access position on the clients.

In our network virtually all the cross-machine stream sharing occurs within a single
application, pmake. Pmake uses migration to dispatch compilations and other jobs to
idle hosts. Pmake generates a small command script, forks a shell process that will read
the script, and migrates the shell to an idle host. The I/O stream to the command script is
shared by pmake and the shell. The script is generated before the shell is migrated, so it
is written to the cache of pmake’s host, and then written back to the file server during the
migration. The way this happens is explained in more detail below. The read operations
by the shell, however, have to go through to the file server because of the shared stream.

Measurements from our network indicate that very little I/O is done to streams
shared by processes on different hosts. In a one-month study period this I/O traffic
accounted for only 0.01% of the bytes read by clients. This low traffic suggests that a
simple mechanism to share the stream offset may be the best, since the mechanism is
unlikely to affect overall system performance. The Sprite scheme is simpler because the
I/O server does not have to make callbacks to retrieve tokens, nor does it have to worry
about circulating the token fairly among the processes that demand the token.

5.2.1. Shadow Stream Implementation

In the following discussion, the term ‘‘stream reference’’ is distinguished from
‘‘stream descriptor.’’ It is the stream references that migrate among hosts, not the stream
descriptor, and the system must support stream references on different hosts that refer-
ence the same stream descriptor.

The addition of shadow streams to the kernel data structures is shown in Figure 5-1.
Note that the shadow stream always exists on the I/O server, whether or not migration
has occurred. This is a simplification in the implementation, and its effects are discussed
below. The shadow stream has a client list that is used to detect when the stream is in
use on different client hosts. The following invariants, which must be maintained during
migration and error recovery, apply to the shadow stream descriptor.

g The stream access position is valid in the client’s stream descriptor if the stream is
only in use at that client. Otherwise, the stream access position is valid in the
server’s shadow stream descriptor.

g The shadow stream has a client list with an entry for each host with a process that is
using the stream. If a stream has two references and one reference migrates to
another host, the client list on the shadow stream descriptor must be updated to reflect
this.
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Figure 5-1. Streams and shadow streams. This is similar to Figure 3-6, except that
stream #359 is now shared by processes on different hosts, and there is an additional
shadow stream descriptor for this stream on the I/O server. The shadow stream descrip-
tor has its own client list that is used to detect when the stream becomes shared by
processes on different hosts.
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g The reference count on a shadow stream descriptor does not reflect remote processes
that are using the stream. Only local processes, if any, are reflected in the shadow
stream’s reference count. This invariant ensures that remote FORK and DUP opera-
tions do not have to be propagated to the I/O server. Only during migration (and
OPEN and CLOSE) is there communication with the I/O server.

Currently a shadow stream descriptor is created on the I/O server for every stream,
not just those that are shared during migration. The main reason the shadow descriptor is
always created is to simplify the RPC interface to the server. All I/O requests identify
both the stream and the underlying object, and the server verifies both the existence of its
shadow stream and the corresponding object descriptor. However, it increases the
memory usage of the servers to always have shadow stream descriptors. In the future,
the implementation may be optimized to create shadow stream descriptors on demand,
but the following description assumes they are always created.

5.3. Migrating an I/O Stream

This section describes the procedure used to migrate a stream reference to a new
client. The main problem is that the I/O server treats references to the same stream on
different clients as different streams. Regardless of what clients share a stream’s access
position, the I/O server has to account for stream references on different clients to prop-
erly support cache consistency. For example, a file that is being both read and written is
still cacheable on a client as long as all the readers and writers are on the same client.
However, as soon as a single stream reference migrates to a different host the file is no
longer cacheable. In effect, migration can cause a stream to split into two streams as
viewed by the I/O server. Such a split is shown in Figure 5-2. Migration can also cause
two streams to merge back into one, in the case where all the stream references end up
back on the same client.

Figure 5-2 is a simple example of a stream with 2 references that demonstrates the
problem. Before migration the stream descriptor has a reference count of 2, and there is
1 usage count on the object descriptor from the stream. If both references are closed, the
first CLOSE will simply decrement the reference count in the stream descriptor and have
no effect on the object descriptor. The second CLOSE will take away the last stream
reference, at which point the usage counts on the object descriptor have to be decre-
mented. However, if one of the stream references migrates to a new host, then each host
will have a stream descriptor with a reference count of one, and closing either stream will
result in a CLOSE being made on the object descriptor. Thus, what used to be viewed as
a single stream at the level of the object descriptor is now two distinct streams. In order
to support this the client list on the object descriptor has to have an additional entry
added for the new client, and the summary usage counts on the object descriptor have to
be incremented to account for the additional CLOSE that will be seen.
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Figure 5-2. A stream may be shared by processes on different hosts after migration. Be-
fore the migration the I/O server only knows about the stream on one client, and the fact
that the stream is shared by two processes is hidden from it. After migration the stream
is in use on different clients and the I/O server has to be informed because it is as if a
new stream were being opened at the second client. The I/O server adds a new entry to
its client list and increments is summary usage counts to reflect the ‘‘new’’ stream.

5.3.1. Coordinating Migrations at the I/O Server

The basic approach to updating the state of the I/O data structures during migration
is as follows. When a process migrates away from the source client no changes are made
to the source client’s I/O data structures, nor is the I/O server contacted. Instead, the des-
tination client notifies the I/O server of the migration after the process arrives there. The
I/O server then makes a callback to the source client. At this point coordinated state
changes occur. During the callback the I/O server holds its shadow stream descriptor
locked in order to serialize with migrations and closes of different stream references.
The result of the callback indicates if any stream references remain at the source client.
The I/O server updates the client list in the shadow stream descriptor to reflect the new
stream on the destination client, and possibly the departure of the stream from the source
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client. After the shadow stream client list is updated the I/O server can determine if the
stream is in use on different clients. If it is, then it must update the client list on the
underlying object descriptor and take any object-specific actions that are required. In
particular, the cache consistency algorithm is invoked at this time in the case of regular
files.

One of the important points of the above algorithm is that the state of the system is
updated after a process arrives at its destination, and no state changes are made as it is
leaving the source client. Unrelated state changes can occur between the time a stream
reference leaves the source client and arrives at the destination. Other stream references
could be closed at the source, or they could migrate onto the source client, or I/O opera-
tions could update the stream access position. The I/O server has to coordinate these
various cases, and coordination is most easily done after a reference has arrived at the
destination.

The stream access position is also shifted among hosts during migration. When the
first stream reference migrates away from the source client, the server fetches the current
access position as part of the callback. The access position remains valid at the server
until all the stream references have migrated to the same destination client. The server
passes the access position to the client in the return parameters of the destination client’s
notification. This callback structure is illustrated in Figure 5-3.
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Figure 5-3. Migrating the stream access position. The destination client notifies the I/O
server that a stream reference has migrated to it. The I/O server makes a callback to the
source client to retrieve the stream access position and tell the source to release a stream
reference. If the only stream references are at the destination client, then the I/O server
passes the offset to the destination client.
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5.3.2. Synchronization During Migration

Proper synchronization during migration is critical. The file system is implemented
using locks on individual data structures to allow for concurrency on a multiprocessor.
There is a conflict between holding many locks in order to ensure that state changes on
the clients and the I/O servers are consistent, and preventing deadlock with other opera-
tions that can be proceeding concurrently. A potential source of deadlock is the interac-
tion of a CLOSE by the source client with the callback by the I/O server during a
MIGRATE. During CLOSE the client locks its stream descriptor, and if it is the last
stream reference the client also locks the underlying object descriptor, then the I/O server
locks its shadow stream descriptor, and finally the I/O server locks its object descriptor.
These locks are held so the object descriptors can be updated to reflect the departure of
the stream from the source client. During the callback the I/O server locks its shadow
stream descriptor and then the client attempts to lock the its stream descriptor and the its
object descriptor. The shadow stream is locked during the callback to serialize this
migration with other migrations and closes of other stream references. There is apparent
circularity in lock dependencies here, but the following two scenarios show that deadlock
cannot occur.

The first case concerns the CLOSE and MIGRATE of references to the same
stream. Deadlock cannot occur because the CLOSE only goes through to the I/O server
when the last reference is being removed from the stream descriptor. If there were two
references at the source client, for example, and one was migrating at about the same
time as the other was being closed, then either of the following two situations occurs. If
the CLOSE occurs before the callback from the server, then it will see a reference count
of 2 at the source client, and it will not contact the I/O server. When the CLOSE com-
pletes, the callback can lock the client’s stream descriptor, discover that the last reference
has migrated away, and destroy the stream descriptor. If the callback occurs first, it will
decrement the reference count at the source client and unlock the stream there. The
CLOSE will then go through to the I/O server and be blocked on the locked stream
descriptor there. However, the callback has been made, so when the MIGRATE com-
pletes, the CLOSE operation will proceed.

The second case concerns the CLOSE and MIGRATE of different streams to the
same object. Deadlock cannot occur because the I/O server leaves its object descriptor
unlocked during the MIGRATE callback. The CLOSE of a different stream will lock the
client’s object descriptor and then attempt to lock the I/O server’s object descriptor. If
the I/O server locked its object descriptor and then attempted to lock the client’s object
descriptor during the MIGRATE callback, then deadlock could result. Thus, it is crucial
that the I/O server’s object descriptor is not locked during the MIGRATE callback so that
a CLOSE of an unrelated stream will not hang the callback.

5.4. The Cost of Process Migration

There are a few important costs to the file system that stem from process migration.
Additional complexity is required to maintain the shadow stream descriptors and the
stream accounting during migration. Additional storage space is required on the I/O
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servers to store the shadow stream descriptors. Finally, there is some overhead on server
operations because the client must be validated as a proper client of the shadow stream.

5.4.1. Additional Complexity

The additional complexity due to migration is difficult to measure accurately. One
measure is in the additional code required to support it. Migration accounts for about 6%
of the code (2617 lines) and 7% of the procedures (41) in the file system implementation.
About half of the migration code is object-specific, and these procedures often re-use
existing object-specific routines. The bulk of the complexity is in general routines that
handle the synchronization problems, the shared access position, etc.

Size is not necessarily an accurate measure of complexity, however. Migration was
a difficult piece of the file system to implement correctly because it interacted with many
other areas of the file system. The bookkeeping that supports caching had to be properly
maintained, and the locking of data structures to serialize operations had to done
correctly during migration, too. The initial implementations contained deadlocks, which
stemmed from a conservative approach to locking data structures. In a highly concurrent
environment, such as that on the file server, it is tempting to hold locks on multiple data
structures to be sure that state changes are properly coordinated. Furthermore, because
migration changes state on different machines, locks are held on multiple machines
simultaneously. There were a number of attempts at the migration algorithm that seem-
ingly worked, only to deadlock days later after many thousands of successful migrations.

5.4.2. Storage Overhead

The shadow stream descriptors can occupy a significant amount of memory on the
file servers for two reasons. First, file servers always create shadow stream descriptors,
whether or not migration will occur, in order to simplify the implementation. However,
the file servers can have several thousand shadow stream descriptors during periods of
heavy activity. A Sprite client workstation with an average window system setup has
around 200 streams. About 70 of these streams are purely local and are associated with
the window system and TCP/IP. However, there are around 130 streams that have sha-
dow descriptors on a file server. The number of streams can increase considerably during
large jobs, and our file servers have peaked at nearly 8000 shadow stream descriptors.

The second reason the stream descriptors occupy a lot of space is because they are
rather large, about 100 bytes each. The size of the stream descriptor is impacted by two
implementation issues, both of which could be optimized in the case of shadow stream
descriptors. First, stream descriptors are implemented as a standard object descriptor so
they can have a descriptor ID and be manipulated with the standard utility routines to add
them to a hash table, fetch them, lock and unlock them. The header information for a
standard descriptor is 40 bytes, including a 16 byte descriptor ID. Secondly, there is
some naming information associated with a stream that is only needed in certain cir-
cumstances, and it is not needed on a shadow stream descriptor. This is another 40 bytes
or so. All that is really needed on a shadow stream descriptor is an ID, a reference count,
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some flags, a client list header (head and tail pointers), and a pointer to the object
descriptor. The ID could be implemented as an <I/O server, number> pair to ensure
uniqueness, so the shadow stream descriptor could be trimmed down to 28 bytes assum-
ing 4-byte integers and pointers.

The storage associated with the shadow stream descriptors is a pragmatic issue, but
one that has to be addressed as the system scales up to support a larger network. In our
current network of around 30 clients, peak values of 8000 streams indicate that a system
with 500 clients could have well over 100,000 streams requiring 10 Megabytes of
memory for the shadow stream descriptors alone. At this scale there is more motivation
to trim down the storage associated with stream descriptors. The best optimization
would be to delay creation of the shadow stream until migration occurs.

5.4.3. Processing Overhead

The shadow stream descriptor also adds overhead when servicing clients’ RPC
requests. Clients identify both the stream and the underlying object in RPC requests, and
the server is careful to verify that the client is on the client list of both the shadow stream
descriptor and the object descriptor. This checking is done to ensure that the client’s
stream data structures match the servers because a diabolical failure could cause the
client and server to become out-of-sync. The server rejects the client’s request if the
server’s state does not agree with the client’s, which forces the client to take the recovery
actions described in Chapter 6 to resolve any inconsistencies. The server also has to
check if the offset in its shadow stream descriptor should override the offset provided by
the client. These actions add a small amount of overhead on each remote I/O operation,
whether or not migration is being used.

5.5. Conclusions

This chapter described the use of shadow stream descriptors to solve the problem of
preserving the semantics of shared I/O streams during process migration. The shadow
stream mechanism parallels the solution to the shared file caching problem. If a stream is
shared among processes on different hosts, the stream descriptors on those hosts are
bypassed and the server’s shadow stream descriptor is used. Similarly, if a file is write-
shared among processes on different hosts then their caches are bypassed and the server’s
cache is used. This technique of bypassing the local cache during sharing is a
simplification; it eliminates the need for circulating ownership of the current access posi-
tion (or file data) among clients.

This chapter also presented a deadlock-free algorithm for updating the file system’s
distributed data structures during migration. The procedure is complicated by concurrent
operations such as closes and other migrations that also affect the file system’s distri-
buted state. The I/O server coordinates updates to the data structures on both clients
involved in migration, and it locks its own data structures carefully to avoid deadlock
while still providing the needed synchronization with concurrent operations.
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CHAPTER 6

Recovering Distributed File System State
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6.1. Introduction

This chapter considers the effects that host failures have on the distributed file sys-
tem. There may be many clients and servers in the system, and it is not uncommon for
machines to be rebooted for routine reasons, or for outright failures to occur. This
chapter describes a new recovery system that relies on redundant state in the network and
cooperation between clients and servers. Clients can continue some operations when
servers are down, and they recover automatically after servers restart. For example, users
can continue to use interactive applications such as editors while a server is down,
perhaps for a routine reboot. Most of the processes already running on their workstation,
including the window system and the editor, can continue execution. A background
compilation, however, might be blocked because it needs to access a file on the server. It
will be continued automatically after the system recovers. This chapter describes the
mechanisms built into the file system that provide this kind of fault tolerance.

The recovery problem is complicated by the ‘‘stateful’’ nature of the Sprite file
servers. The servers keep state about I/O streams to their files and about how clients are
caching file data [Nelson88a]. A server’s state has to be maintainted across crashes and
reboots. Otherwise, open I/O streams to the server would be destroyed by the server’s
loss of state. The RFS [Back87] and the MASSCOMP remote file systems [Atlas86]
handle server failures in this way. This behavior is not acceptable in our environment of
diskless workstations. The crash of an important server could wipe out most of the active
I/O streams in the system and essentially require a restart of all workstations.

A standard approach to preserving the server’s state across crashes is to log it to
stable storage. Logging is used in MFS, Burrows’ stateful file system[Burrows88].
However, logging slows down the OPEN and CLOSE operations because of the addi-
tional disk I/O’s required. Instead, this Chapter describes a different approach to
recovery that relies on redundant state on the clients instead of logging:

Server state is organized on a per-client basis, and each client keeps a duplicate version
of the server’s state about the client. This state can be kept in main-memory on the
server and the client in order to avoid the costs associated with disk accesses. The
server can clean up the state associated with a client if the client crashes, and the client
can help the server rebuild its state if the server crashes.

The state that is protected in this way in the Sprite file system are the I/O stream
data structures, file lock information, and dirty cache blocks. The client’s object
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descriptor is augmented with enough information to rebuild the state kept in the client list
of the server’s descriptor. The dirty cache blocks are retained on the client until the
server has written them safely to disk. (Actually, a Sprite file server implements a
number of writing policies that trade off performance for reliability. This is discused
below in Section 6.4.) Keeping the extra state on the client adds little processing over-
head during normal operations and requires no additional disk operations.

There are two additional problems related to error recovery that are considered in
this chapter. The first is detecting the failure of other hosts, which is done by monitoring
the RPC communication protocol. The system recognizes two failure events, crashes and
reboots. Client crashes trigger clean-up actions by servers, while server reboots trigger
recovery actions by clients. Measurements presented below indicate that there is very lit-
tle overhead from failure detection.

The second problem concerns operation retry after server recovery. Operations that
access a failed server are blocked and then retried automatically after server recovery.
However, users are given the option of aborting operations instead of waiting for server
recovery. The recovery wait is structured in the same way that blocking I/O is struc-
tured, at a high level, outside object-specific code and with no resources locked. The
recovery wait can be aborted easily with this structure. This approach provides flexibility
in handling errors so that users are not necessarily stuck when they attempt to access a
failed server.

The remainder of this chapter is organized as follows. Section 6.2 contrasts the
stateless and stateful server models. Section 6.3 describes the state recovery protocol.
Section 6.4 discusses the interactions of delayed-write caching and error recovery. Sec-
tion 6.5 discusses operation retry after recovery completes. Section 6.6 describes the
crash detection system that triggers state recovery. Section 6.7 describes our experiences
with the recovery system. Section 6.8 concludes the chapter.

6.2. Stateful vs. Stateless

The difficulty of recovering state after failures has lead to the notion of a ‘‘state-
less’’ server, one that can service a request with no state (or history) of previous
requests.14 What this means in practice is that the server logs all essential state to disk so
the state will not be lost in crashes. The advantage of statelessness is that failure
recovery is merely a matter of restarting the server, and clients do not have to take any
special recovery actions. WFS [Swinehart79] and NFS [Sandberg85] are examples of
stateless file servers. In these systems, a client can simply retry an operation until it gets
a response from the server. The operation retry is handled inside the communication
hhhhhhhhhhhhhhhhhhhhhhhhhhh

14 Neither ‘‘stateful’’ or ‘‘stateless’’ are in my dictionary. Even if they were defined with
their assumed meanings, with state and without state, they would not be completely accurate; all
servers keep state of some sort. However, ‘‘stateful’’ implies that some essential state may be
lost in a server crash.
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protocol, and a server failure is manifested only as an especially long service call. Even-
tually, the server reboots itself and, by its stateless nature, can service any client request
(e.g., READ or WRITE). In contrast, if a stateful Sprite file server crashes, it cannot ser-
vice a READ or a WRITE until it has reestablished some state about the client, the state
that was established during an OPEN. An additional recovery protocol is required to
return the Sprite server’s state to the point before it crashed.

While a stateless server makes recovery easier, it suffers a performance hit because
it has to write all important state changes to disk. The performance disadvantage is
demonstrated by comparing the NFS and Sprite file systems. Both systems use main-
memory caches to optimize file I/O, but the stateless model of NFS limits the effective-
ness of its caches. NFS uses write-through caching, while Sprite uses delayed write (or
write-back) caching. When an NFS file is closed, the client must wait for all its dirty
blocks to be written to the server’s disk. The server can forget about the WRITE and
remain stateless. With Sprite’s delayed write approach data is allowed to age in the
cache without being immediately written through to the server. Results from Chapter 8
indicate that about half the data is never written out to the servers. Instead, it is deleted
or overwritten before it ages out of the cache. Head-to-head comparisons with NFS in
[Nelson88a] show that Sprite is 30%-40% faster than NFS, mainly because of these dif-
ferent writing policies. New results from faster machines (10 MIP as opposed to 2 MIP)
indicate that Sprite may be as much as 50-100% faster in the remote case on the new fast
workstations available today[Ousterhout89b]. Network and disk speeds are not increas-
ing as fast as CPU speeds. Sprite’s caching mechanism, which eliminates network and
disk accesses, tends to scale performance with CPU speed, while the NFS protocol is
limited by disk and, to a lesser degree, network speeds.

Hardware such as RAM disks with battery backed-up memory can be used to
improve the performance of a stateless file server. The state can be kept in the non-
volatile memory, which is treated as a very fast disk. Addition of special hardware, how-
ever, is an expensive solution, and it does not address the issue of maintaining perfect
consistency of the client caches, which is the goal of the Sprite file servers’ state.

6.3. State Recovery Protocol

The following sub-sections describe how the system’s state is organized to allow
recovery and the steps taken during the recovery protocol. Recovery actions are trig-
gered by events from the kernel’s failure detection system, which will be described in
detail in Section 6.5. The failure detection system generates two events, crash events and
reboot events. Crash events trigger clean-up actions by servers, while reboot events
trigger recovery actions by clients.

6.3.1. Recovery Based on Redundant State

Sprite’s approach to recovering state is to duplicate the server’s state about a client
on that client, and then rebuild the server’s state from the copies on its clients. To sup-
port this approach, the client and the server maintain parallel state information: the
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servers keep per-client stream information, and the clients keep state about their own
streams.

There is very little added to the I/O stream data structures described in Chapter 3 to
support this approach. The server’s state is already organized into client lists to support
the cache consistency algorithm. All that is required is for the client to duplicate the
accounting information kept in the server’s client list entry. What would otherwise be a
simple reference count on the client’s REMOTE object descriptor has to be a full fledged
set of usage counters, just like the ones the server keeps. In the discussion below the
usage is simplified to be a reader count and a writer count, but the system also records the
number of streams from active code segments, and information about user-level file
locks. The addition to the client’s REMOTE descriptors can be stated as another invariant
on the file system state. An example is given in Figure 6-1.

g The usage counts in a client’s REMOTE object descriptor summarize the number of
streams that reference the object descriptor. The usage count does not reflect stream
sharing among processes. For example, even though stream #359 is shared by two
processes, it only counts as one stream in terms of object use. The client’s usage
counts are used to recover the server’s client list.

The stream access position is also vulnerable to a server crash while the stream is
shared by processes on different hosts. In this case, the stream access position is cached
in the server’s shadow stream descriptor, and the access position in the client’s stream
descriptor is not used. However, the clients have to keep backup copies of the stream
access position if the shadow stream descriptor is to be fully recoverable. The server has
to return the current stream access position to the client after each I/O operation so that if
the server crashes, the access position is not lost. A server-generated time stamp also has
to be returned so the server can determine which access position is most up-to-date upon
recovery.15

6.3.2. Server State Recovery

There are two parts to maintaining the servers’ state during crashes. The first con-
cerns cleaning it up after a client crashes, and the second concerns repairing a server’s
state after it reboots or a network partition ends. Cleaning up after a dead client is rela-
tively straight-forward; in response to a crash event the server examines its client lists
and closes any open I/O streams and releases any file locks that were held by the crashed
client. This cleanup is implemented by calling an object-specific CLIENT_KILL pro-
cedure on each object descriptor so the cleanup actions can be tailored to the specific
needs of files, devices, and pseudo-devices. The CLIENT_KILL procedure is an addition
hhhhhhhhhhhhhhhhhhhhhhhhhhh

15 This aspect of recovery, however, is not currently implemented. If the server crashes
when a stream is shared across machines, then it will loose the shared access position. Most
shared streams are for a process’s current working directory, which does not depend on the access
position. However, this bug could cause errors and it ought to be fixed.
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Figure 6-1. REMOTE object descriptors on clients are augmented to keep usage counts
that parallel the usage counts kept in the client list of the server’s LOCAL object descrip-
tor.
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to the I/O interface described in Chapter 3.

Recovery of a server’s state is done with an idempotent recovery protocol. An
idempotent operation can be invoked many times and have the same effect as invoking it
one time. In this case, idempotency means that the recovery protocol always tries to
reconcile the state on a client with the existing server state. Idempotency is important
because network failures can (and will!) lead to unexpected inconsistencies between the
client’s and the server’s state. In particular, the operations in progress at the moment of a
network failure may or may not complete on the server, so the client cannot be sure of
the server’s state after the network partition ends. An idempotent recovery protocol
means that the clients can be conservative and invoke the recovery protocol whenever
they think the server’s state might not be consistent with their own.

Clients initiate recovery in response to a reboot event or when they get a ‘‘stale
descriptor’’ error from a server. The ‘‘stale descriptor’’ error indicates that the server
does not have the client registered on the client list of its object descriptor. This situation
can arise if the server has invoked the CLIENT_KILL procedure in response to a crash
event generated during a network partition. (As described below in Section 5.5, the
failure detection system cannot distinquish between host crashes and network partitions.)

6.3.2.1. The Initial Approach

In the current implementation, clients perform recovery by invoking an an object-
specific REOPEN procedure on each of the client’s object descriptors that were opened
from the server that rebooted. REOPEN is an addition to the I/O interface described in
Chapter 3. The object-specific implementation of the REOPEN procedure is similar for
all cases (i.e., files, devices, pseudo-devices); the summary use counts in the client’s
REMOTE object descriptor are sent to the server via RPC, along with any object-specific
information required by the I/O server. At the I/O server a complementary REOPEN
procedure is invoked to determine if the client’s use of the object is ok. The server’s
REOPEN procedure compares the client’s usage counts with the ones it has in its client
list. The server may have to close streams, open streams, or do nothing at all in order to
bring its object descriptor up-to-date with the client’s. Opening and closing streams
involve object-specific actions. The actions associated with cached files are described
below, in Section 6.4.2.1.

The server’s state also includes the shadow stream descriptors that were introduced
in Chapter 5 to keep a shared stream’s current access position. Currently the client
makes a pass through its stream descriptors after it has reopened all of the underlying
object descriptors. During this phase the server verifies that it has a corresponding sha-
dow stream descriptor.16 Errors during this phase cause the client’s stream to be closed
and the server’s client list to be adjusted accordingly. Errors can arise if the server
hhhhhhhhhhhhhhhhhhhhhhhhhhh

16 It is also during this phase that the server should recover the shared access position in the
shadow stream.
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accidentally reuses a streamID for a different shadow stream. While this case is rare, the
current implementation is conservative and it checks for this conflict anyway.

Note that this two-phase approach (object descriptor recovery then stream descrip-
tor recovery) requires the client to block OPEN and CLOSES during the recovery proto-
col. This ensures that the two phases of its recovery protocol give the server the same
view of the client’s state. As described below, this restriction could be eliminated.

The main problem with this recovery protocol is that it places more load on the
servers during the recovery protocol than necessary. There are two contributions to the
extra load. First, clients can have a large number of unused object descriptors because of
the data cache. The descriptors contain state about the cache blocks of a file, and the
descriptors are cached along with the data. These descriptors are reopened as part of the
recovery protocol, even though it would be possible to revalidate them the next time they
are opened. Second, there is some redundency in this recovery protocol. First, the client
reopens the object descriptors, which contain counts of I/O streams that reference these
descriptors. Second, the client reopens its stream descriptors to ensure that the server has
corresponding shadow stream descriptors. Thus, the server hears about a stream twice,
once when the object descriptor is reopened and once when the shadow stream descriptor
is reopened. The result of these inefficiecies is that our servers often see tens of
thousands of REOPEN requests in a short period of time after they reboot.

6.3.2.2. Improvements

The existence of shadow streams suggests an alternative structure to the recovery
protocol, although this alternative has not been implemented. The client could perform
one REOPEN for each of its stream descriptors first and eliminate the need for a REO-
PEN of each of its object descriptors. The stream REOPEN operation would identify the
object descriptor that it references and indicate the usage of the stream. Idempotency
would be achieved by checking for the existence of a shadow stream descriptor on the
server. If one exists then the server already has state about the stream and it would
ignore the REOPEN. Otherwise the server would open a new stream and update its
client list accordingly. This approach eliminates both problems described above; cached
but unused object descriptors would not be reopened because no stream would reference
them, and servers would only hear about each stream once. Additionally, this approach
eliminates the need to block out OPEN and CLOSE operations during the recovery proto-
col.

The main drawback of this approach is that it depends on the existence of the sha-
dow stream descriptors. As noted in Chapter 5, there can be a large number of shadow
stream descriptors if there is one for each client stream instead of just having one for
each client stream that is shared due to migration. However, Sprite already relies on
large main memories for its data cache [Nelson88a] so it is not unreasonable to assume
there will be enough memory for the server’s shadow stream descriptors.
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6.3.2.3. Reopening Cached Files

When reopening regular files the client’s RemoteFileReopen procedure passes to
the file server the summary use counts of the file (i.e., how many readers and writers),
lock information, the version number of the client’s cached copy, and a flag that indicates
whether or not the client has dirty data cached. At the file server, the LocalFileReopen
procedure is invoked in response to the client’s RPC. This procedure invokes the regular
cache consistency protocol to ensure that the client sees the most up-to-date version of
the file, and it updates the file’s client list to agree with the client’s reader and writer
count, unless a conflict is detected.

The cache consistency protocol detects conflicts that can arise after a network parti-
tion. If a client caches a file for writing and a network partition occurs, dirty data can be
trapped in the client’s cache. During the partition the server may get a crash event from
the host monitor and close the I/O streams from the client. This action allows another
client to open the file for writing and generate a conflicting version of the file. A differ-
ence between the recovering client’s version number for the file and the server’s version
number indicates that the conflict has occurred. In this case, the original client’s reopen
of the remote file object descriptor fails.

Another cause for conflict is that a file may get corrupted by a bad server crash. In
this case, the server’s disk scavenging program increments the file’s version number, and
this will prevent any clients from recovering I/O streams to that file.

The disk scavenger may also find files that are no longer referenced by any direc-
tory, although this does not cause a conflict or an error. This situation can arise because
of the semantics of the UNIX REMOVE operation. It is possible to remove a directory
entry for a file that has an open I/O stream to it, and the file is not deleted until the I/O
stream is closed. If the server crashes or reboots with files in this state, then the disk
scavenger does not delete them (it puts them into a ‘‘lost+found’’ directory) and it is still
possible for clients to reopen I/O streams to these files. The most common way this case
arises is when new versions of programs are installed. The previous version of the pro-
gram image is removed by name, but it may linger on disk until all instances of the pro-
gram have terminated.

6.4. Delayed Writes and Failure Recovery

While the recovery system maintains the server’s caching state across failures, the
use of write-back caching does introduce some windows of vulnerability in Sprite. This
section reviews these problems, and describes the steps taken to mitigate them.

First and foremost, using delayed writes raises the possibility that a client failure
can cause some recent data to be lost. The length of the delay trades off reliability for
better performance. The longer the delay, the greater the chance that a write-back will be
avoided because dirty data will be overwritten or deleted. Measurements in Chapter 8
indicate that as much as 50% of the data generated by Sprite clients does not get written
back when using a 30-second delay policy. However, a longer delay increases the
chance that data will be lost in a system failure. To mitigate this danger, Sprite provides
a system call that explicitly forces a range of file blocks to disk and returns only after the
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data has been safely written out. This call is used by our editors and source code control
programs. The Sprite kernel also attempts to write-back the cache upon a system error.
This write-back cannot be counted on 100%, however, because a bug in a critical part of
the cache module could foil a write-back. In the worst case (e.g., a power failure on the
client), a user loses 30 seconds of his work. This is the same guarantee made by a stand-
alone UNIX system, and we view this as an acceptable trade off against the higher per-
formance we obtain during normal use.

A server failure does not necessarily cause loss of data, although the risk is depen-
dent on the writing policy used by the client and the server. To prevent loss of data, the
client must retain dirty cache blocks until they are safely on the server’s disk. If the
server crashes, the data is either on disk or still in the client’s cache. With this write-
back policy, the server must write each block to disk as it arrives from the client. How-
ever, this writing policy can require as many as 3 disk I/Os for each block: one for the
data, one for an index block, and one for the file descriptor.

In practice we use a more efficient writing policy that has a small window of vulner-
ability [Nelson88b]. Servers wait until all the blocks for a file arrive from a client before
writing them to disk.17 This amortizes the writes of the index blocks and the file descrip-
tor over the cost of writing the whole file. Unfortunately, in the current implementation
the client is unaware of the server’s writing policy. A client assumes that when a
WRITE RPC completes it is safe to discard the cache block. Thus, it is possible to lose
data that has been written from the client cache to the server cache but has not yet made
it to the server’s disk.

The best solution to this problem would be to change the cache write-back mechan-
ism from a block-oriented to a file-oriented system. A client could retain a whole file, or
a large portion of a big file, until the server has it safely on its disk. This write-back pol-
icy would allow amortization of the disk I/O’s for index blocks and descriptors, while
still allowing a client to age blocks in its cache before writing them out. A file-oriented
write-back policy would also work well with the log-structured file system currently
being developed for Sprite [Ousterhout89a].

Another improvement to the current implementation would be the addition of
atomic file replacement on the server. With atomic replacement, a new version of the file
would be committed only after all the blocks for it have arrived from a client and been
written safely to disk. A single disk I/O could be used to commit the version, typically
by writing a new version of the file descriptor. LOCUS implements atomic replacement
in this way. Atomic replacement means that if the server crashes with some of a file’s
blocks still dirty in its cache, the file will revert to the previous version after the server
recovers. Atomic replacement also means that if a client crashes after writing back only
part of a file then the server can retreat to the previous version. One problem with atomic
hhhhhhhhhhhhhhhhhhhhhhhhhhh

17 Our servers use the write-through-on-last-dirty-block policy described in [Nelson88b].
The servers can also be configured to use write-through for best reliability or full-delay for best
peformance.
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write schemes concerns very large files. Extra disk space is needed until the new file ver-
sion is committed. Another problem is that atomic replacement is not appropriate for
database-like files that are updated by changing individual records within the file.

The final problem introduced by delayed writes stems from network partitions. As
described above in Section 8.3.2.3, a partition can result in clients generating conflicting
versions of a file. A conflict is detected by the server’s cache consistency algorithm
when the original client tries to recover the server’s state. The original client’s version
number will be out-of-date, so its recovery attempt for the file will be denied by the
server. Currently there is no way for the client to save its conflicting version.18 This
conflic is rare, however. Data presented in Chapter 8 shows that most of the write-shared
files are not cached so partitions are not a problem, and those files that are cached are not
shared so the client can recover successfully.

6.5. Operation Retry

In order to make error recovery transparent to applications, operations that fail due
to a server failure should be retried automatically after the state recovery protocol com-
pletes. However, there are some cases in which it is better to abort an operation than
wait for recovery. Typcially these situations arise because users do not want to wait for
recovery; they would rather abort what they are doing and try to get some work done
with a different server. There are also status-related operations in which an immediate
error reply is more appropriate than waiting for the server to come back on-line. Thus,
operation retry should be automatic by default, yet it should also be possible to abort
operations that are waiting for recovery.

One approach to operation retry is to build it into the communication protocol.
While the Sprite RPC will system resend a packet several times if needed, it eventually
gives up and returns a timeout error. The NFS file system, in contrast, uses an RPC pro-
tocol with an indefinite retry period[RPC85]. The SunOS RPC protocol used with NFS
simply retransmits a request until the server responds, even if the client must wait
minutes or hours for the server to come back on-line.19 This approach relies on the state-
less nature of the NFS file servers. The NFS server can handle any RPC request after it
boots because it does not keep any open file state. However, retrying an operation
doggedly until it succeeds may not be what the user desires. Instead, the user may prefer
to abort the operation and continue work with another available server. Unfortunately,
the SunOS RPC protocol is uninterruptible, so a user can get stuck attempting an opera-
tion with a crashed NFS server.
hhhhhhhhhhhhhhhhhhhhhhhhhhh

18 The CODA file system [Satyanarayanan89] adds a special directory structure called a co-
volume as a place to store conflicting versions.

19 It is possible to use finite timeout periods with the SunOS RPC protocol. However, the
failure semantics of NFS are not well defined, so in practice RPC connections to NFS servers do
not use a timeout period.
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In Sprite, operation retry is handled at a higher level. After an RPC timeout, control
is returned to high-level procedures that are above the object-specific naming and I/O
interfaces. At this level a process either waits for the completion of the recovery protocol
and retries, or it aborts the operation. Operations are structured this way for two reasons.
First, the semantics of the operation determine whether or not it should be retried at all.
It may be more appropriate to communicate a failure status to the user than it is to force
the user to wait for the server to recover. The operations that are not retried are described
below. Second, this approach means that no object-specific resources are held locked
while waiting for the recovery protocol. Thus, it is possible for a user to abort an opera-
tion that is waiting for recovery, just as a blocked I/O operation can be aborted. This
high-level approach to operation retry gives the system (and users) more flexibility in the
way failures are handled.

There are three responses to the failure of a remote operation: retry them after
server recovery, invoke special error handing, or reflect the error up to the application.
These cases and the operations that they apply to are discussed below.

6.5.1. Automatic Retry

The main category or operations are those that are automatically retried after
recovery. They include all the naming operations (e.g., NAME_OPEN, REMOVE,
REMOVE_DIR, MAKE_DIR, MAKE_DEVICE, HARD_LINK, RENAME,
SYM_LINK, GET_ATTR and SET_ATTR) and most of the I/O operations (e.g., READ,
WRITE, IOCTL). The retry loop for the naming operations is built into the iterative
lookup procedure described in Chapter 4, and the retry loop for I/O operations is built
into the retry loop associated with blocking I/O operations. In these cases, the additional
complexity introduced by failure recovery was minimal.

The user is informed when an RPC timeout occurs, and they have the option of
aborting the current operation via a keyboard interrupt (control-C). Kernel error mes-
sages are routed to the system error log that is typically displayed on a window of the
user’s workstation. A user can then abort the operation that caused the failure, or the
user can wait for the operation to be retried after recovery.

6.5.2. Special Handling

The second catagory of operations are those that are not retried directly, but cause
some special error handling to occur. This action is appropriate for remote operations
that are one part of a larger operation. Important examples include the recovery protocol
itself, notifications from I/O servers, cache consistency callbacks, and the SELECT RPC
that polls the status of a remote object. These cases are discussed below.

The simplest approach to handing an error during the recovery protocol is to abort it
and retry the recovery protocol later. This approach assumes that recovery has failed
because the server has crashed again. It is also possible that the heavy load from the
recovery protocol has overloaded the server so much that it cannot service RPCs. This
case has occured because of deficiencies in the RPC implementation, as described below
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in Section 6.7. In either case, the idemponent nature of the recovery protocol means it is
always okay for a client to abort the protocol and restart it later.

The WAKEUP RPC is not retried. This RPC is used by I/O servers to notify a pro-
cess that is blocked on an I/O operation. If a WAKEUP fails it means the client has
crashed, in which case the notification is unnecesary, or that there has been a network
partition. In this case, the server can rely on the fact that the client will invoke the
recovery protocol when the partition ends and then retry any I/O operations. The I/O
operations are retried after recovery no matter what caused them to block in the first
place so there is no danger from lost wakeups.

The cache consistency callbacks from the file server to a client are not retried so
that a failed client does not hold up operations by different clients. An OPEN, for exam-
ple, may trigger callbacks to other clients, and the failure of one client to respond should
not prevent the OPEN from completing. Instead, the server invokes the CLIENT_KILL
procedure to forcibly close I/O streams from the unresponsive client.

The SELECT operation is not retried because a process is generally polling several
file system objects. In this case, waiting for recovery on one object would prevent the
polling of other objects. Unfortunately, it is difficult to communicate a useful error mes-
sage back to an application via the UNIX select interface. It would be best to return an
error status from select and leave the bit set in the select mask that corresponds to the I/O
stream that incurred the timeout. However, UNIX applications do not understand this
convention; they usually assume an error from select is a disaster and they abort. In the
current implementation the error is masked and select indicates that the offending stream
is ready for I/O. This causes the application to read or write the stream and then block
awaiting recovery. This approach is not perfect, however, and we may change select to
mask the error altogether so the applications just ignore the stream.

6.5.3. No Retry

The third catagory of operations are those that are not retried and cause an error to
be returned to the user if the server is unavailable. This approach is appropriate for
status-related commands such as the DOMAIN_INFO RPC that returns the amount of
free space on a disk. Similarly, the attributes operations on open I/O streams are not
retried. An application to query the attributes of its I/O streams to detect failures. There
are other cases in which failed operations are not retried, although the absense of retry
can arguably be considered bugs in the implementation. These are discussed below.

The IO_OPEN RPC is not retried. A remote device open will fail instead of being
retried automatically. This particular case would be relatively straight-forward to fix if it
became a problem.

The CLOSE RPC is not retried. A process can close an I/O stream after the server
fails and not get hung up during the close. The good example is that changing a
process’s working directory is implemented by opening an I/O stream to the new direc-
tory and then closing the I/O stream to the previous directory. If the CLOSE operation
blocked waiting for recovery, a process would not be able to leave the domain of a failed
server. Note that this approach can introduce inconsistencies during a network partition
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(the server will still think the stream is open), although the recovery protocol will repair
the damage.

The RPCs used during the migration of I/O streams are not retried. Failure of a host
during migration can destroy an I/O stream. However, the process manager also aborts a
process if a host fails during migration. Ideally the migration implementation could back
out if the destination client fails, but this has not been implemented.

These examples highlight the fact that error recovery in not always clean and sim-
ple. It is tempting to simplify error handling by taking one of two approaches. One
approach is to abort the current operation and reflect the error up to the application. This
approach is not always appreciated by users. The second approach is to retry operations
indefinitely in the low-level communication protocol. However, this approach is not
flexible enough to handle more complex situations. In Sprite, the low-level communica-
tion mechanism will time out, but higher-level system software does its best to recover
from the failure.

6.6. Crash and Reboot Detection

The recovery system depends on a low-level host monitor module that monitors net-
work communication in order to detect host failures. There are two main issues involved
with failure detection. The first is that failure detection is an uncertain task; it is not pos-
sible to distinquish between a host failure and a network failure. Both of these cases are
manifested as an inability to communicate with the other host. The second issue is the
cost of the failure detection system. Failure detection adds overhead because network
traffic must be monitored, and additional network traffic is generated in order to verify
that other hosts are still alive. The failure detection system is described below, and then
measures of its cost are presented.

The host monitor reports two events: crashes and reboots. Crashes and reboots are
distinguished because servers need to clean up after their clients crash, while clients need
to initiate recovery action after their servers reboot. The interface to the host monitor
module is via callback procedures. Other kernel modules register procedures to be
called in the event of a crash or a reboot (different procedures are registered for crashes
and reboots).

The host monitor detects crashes by monitoring the RPC system for communication
failures. The RPC system will resend a request message several times before giving up
and reporting a timeout error. An RPC timeout indicates that the host is down or the net-
work is partitioned, and this failure triggers the crash callbacks so that other kernel
modules can clean up. The fact that network partitions and host failures are treated the
same means that a server could close I/O streams associated with a partitioned client.
After the partition, however, the client will invoke the recovery protocol in an attempt to
reopen these streams. However, as described in Section 6.3.2.3, there is a possibility of
conflict in recovery after a partition.

One way to detect reboots is to periodically poll (or ‘‘ping’’) another host at a high
enough frequency that it cannot crash and reboot without causing a communication
failure. However, the cost of this solution could be high. It requires clients to generate
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network traffic to the server even when they are otherwise idle. Sprite uses a different
technique that relies on a generation number in the RPC protocol packet header. The
generation number is set to the time a host boots up. The time is obtained from a battery
powered clock, or from a special RPC that broadcasts a request for the time. The host
monitor examines every arriving packet to see if the peer host’s generation number has
changed, indicating a reboot.

With this technique, it is only necessary to ping another host in order to bound the
time it takes to detect a crash or reboot. The rate of pinging, and the hosts which are
pinged, can be tuned to reduce the system load. For example, file servers do not care if a
client crashes unless that client holds some resource. The normal callbacks associated
with caching and file locking are sufficient to detect when a client has crashed while
holding a resource. A timeout on a callback triggers the crash callbacks that clean up
after the client. Thus, there is no need for servers to periodically check up on their
clients. Clients, however, ping their servers in order to bound the time it takes to detect a
reboot. Their periodic check ensures that clients initiate the recovery protocol in a timely
fashion.

The host monitor pings hosts for which reboot callbacks are registered, so other ker-
nel modules need not do their own pinging. Reboot callbacks can be unregistered so that
the host monitor does not have to continue pinging another host forever. As an example,
the process manager registers a reboot callback on a remote host that is hosting a
migrated process, and it cancels the callback after the process terminates. The host mon-
itor also optimizes its pinging by suppressing a communication attempt if there has been
recent message traffic from the other host.

The network-wide cost of pinging is proportional to R * C * S, where R is the rate
of pinging, C is the number of clients, and S is the number of servers. This cost assumes
the worst case where all clients are interested in all servers, and it ignores the effect of
ping suppression due to recent message traffic. In contrast, a naive implementation in
which all hosts actively monitor all other hosts would have a cost proportional to R * N *
N, where N is the total number of hosts. C * S will be much smaller that N * N if S is
smaller than C, which is true in a large network of diskless workstations.

Periodic checking, noting RPC timeouts, and noting changes in the RPC boot gen-
eration number are sufficient to differentiate two states for a host, ‘‘alive’’ and ‘‘dead.’’
A ‘‘booting’’ state is also needed in order to smooth recovery actions. Servers may go
through a significant amount of setup and consistency checking before they are available
for service. For example, our servers take about 5 minutes per disk to verify its direc-
tories and file maps. During this time a server may be talking to the outside world, but it
may not be ready for client recovery actions yet. Without the intermediate booting state,
servers appear to flip between being alive and dead as they come up and generate net-
work traffic, but refuse to service requests. The RPC protocol supports the booting state
by marking out-going requests with a ‘‘non-active’’ flag, and returning a ‘‘non-active’’
error code to any request. The host monitor module sees this error return and does not
report a reboot until a host is fully alive.
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6.6.1. Measured Costs of Crash Detection

Monitoring RPC traffic adds some overhead to the RPC protocol. All incoming
messages must be checked for a change in boot generation number. All timeouts also
have to be noted. On Sun-3/75 workstations, this increases the average cost of a Sprite
kernel-to-kernel echo RPC from 2.19 msec to 2.45 msec. This is a rather large overhead
on a null call, about 10%, although it only adds about 3.6% to the cost of sending a 4
Kbyte block via RPC (7.1 msec vs 7.36 msec). This overhead is time required to acquire
a monitor lock, hash to find the host’s state, read the clock to record the time at which the
current message arrived, and verify that the host has not changed state. The overhead is
incurred twice per RPC, once when the server receives the request message, and once
when the client receives the reply message. This cost could probably be reduced by care-
ful coding.

The background cost due to pinging other hosts is quite small. The cost was deter-
mined by measuring a network of Sun3s with 2 servers and 15 clients during a period of
no other system activity. CPU utilization was measured by counting trips through the
kernel’s idle loop, and comparing this against an idle calibration done during the boot
sequence. The clients ping their servers every 30 seconds with a null ECHO RPC. Each
client host was found to consume a very small fraction of the server’s CPU, about
0.0036%. No applications were executing on the clients, so the load was only due to the
ping traffic from the clients. This load correlates well with the estimated load of a single
RPC done every 30 seconds. If half the cost of an RPC, 2.45 msec, is charged to the
server’s CPU, then one RPC every 30 seconds consumes .001225/30 CPU seconds,
which is about 0.004% utilization. In reality, less than half of the elapsed time for an
ECHO RPC is consumed by the server’s CPU. There is some time spent on the network
itself and in the network interface hardware. Working back from the measured CPU
load, 0.0036% per ECHO, we can estimate that about 1 msec of the 2.4 msec is spent in
the server’s CPU. This time includes interrupt handling and a process switch to a kernel
RPC server process.

Another way to measure the effect of pinging on the servers is to compare the
number of echo RPCs serviced in comparison with other RPCs. Figure 6-2 shows the
number of RPCs serviced by three of the file servers over a 6 month period. The echo
traffic is basically constant throughout the day because it is a function of the number of
clients a server has. Overall, about 6% of the servers’ RPC traffic is due to pings, but this
traffic only accounts for 2% to 4% of the day-time traffic. Note that Mint has substan-
tially less echo traffic than Allspice and Oregano, but each of these servers is shared by
all clients. The lesser echo traffic on Mint reflects an optimization that suppresses a ping
if there has been other recent message traffic between the hosts. Clients ping every 30
seconds, and a ping is suppressed if there has been another message within 10 seconds.
Suppression is effective on Mint because once a minute each client updates a host status
database that is stored on Mint. However, the 10 second value for ‘‘recent’’ is overly
conservative for it to be effective on the other servers. A value for ‘‘recent’’ that is
greater than or equal to the ping interval would suppress many more pings while the
server is up, yet it would still cause the clients to ping at the same rate (i.e., every 30
seconds) once the server crashed. Thus, clients would still detect the server reboot
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Figure 6-2. Echo traffic on three file servers from July through December 22, 1989. The
upper line for each server is its total RPC traffic. The three lines labeled ‘‘Echo’’ are the
echo RPC traffic for each server.

relatively quickly, and the echo traffic could be reduced even further.

6.7. Experiences

The recovery mechanisms described here are real, and they are put to the test rather
frequently in our development environment. Table 6-1 lists the number of reboots on a
per-month basis for the file servers and three of the clients. The total number of reboots
are shown, and then the number of different days on which reboots occurred is given in
parentheses. These reboots occurred for routine kernel upgrades or because the system
crashed. (Unfortunately these two cases are not distinguished in the reboot logs.) The
clients are included to highlight the difference between a Sprite developer (Sage) and a
normal Sprite user (Basil). Rebooting is common with developers as new kernels are
tested. (Ideally a developer has two machines so he does not have to reboot his worksta-
tion, but this is not always the case.) Basil’s user, on the other hand, only reboots his
workstation after a crash or if we insist that its kernel be upgraded to fix some bug. Mace
was used for kernel testing in June and July, and for regular work the rest of the time.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Reboots per Monthiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Month Mint Oregano Allspice Assault Basil Sage Maceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Jan 25 (12) 21 (15) - - - - 12 (6) 56 (17) 17 (6)
Feb 20 (12) 20 (12) - - - - 12 (11) 77 (17) 16 (14)
Mar 35 (17) 38 (18) - - - - 8 (7) 43 (18) 17 (11)
Apr 25 (12) 25 (14) - - - - 3 (3) 53 (10) 7 (5)
May 45 (19) 25 (14) - - - - 10 (9) 22 (13) 20 (12)
Jun 24 (12) 20 (13) - - - - 12 (7) 49 (10) 53 (15)
Jul 9 (7) 14 (10) 7 (3) 0 (0) 1 (1) 80 (13) 61 (13)
Aug 29 (12) 18 (14) 24 (12) 24 (5) 5 (5) 29 (18) 7 (5)
Sep 18 (12) 8 (7) 15 (11) 30 (9) 3 (3) 27 (7) 7 (5)
Oct 21 (14) 8 (6) 22 (13) 13 (10) 2 (2) 15 (8) 5 (4)
Nov 31 (16) 11 (9) 15 (10) 12 (8) 4 (4) 11 (6) 7 (3)
Dec 7 (4) 14 (9) 4 (3) 2 (2) 1 (1) 3 (3) 3 (2)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6-1. Reboots per month for the file servers and three clients. The first number for
each host is the total number of reboots, and the number in parentheses is the number of
different days on which a reboot occurred. Sage is used by a Sprite developer and re-
boots frequently because of kernel testing. Basil’s user, on the other hand, reboots as in-
frequently as possible.

The system’s stability has been improving throughout the year, and there have been
long periods without server failures. Table 6-2 gives the mean time between reboots
(MTBF), the standard deviation, and the maximum uptime observed, for the file servers
and three clients. This was computed from July 1989 through January 1990. While the
MTBF of our servers is still only a few days, it is improving steadily as we continue to
find and fix bugs. The long maximum uptimes suggest that the servers are basically

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mean Time Between Reboots (Days)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Host Average Std Dev Maxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mint 1.63 2.63 21.69
Oregano 2.56 3.29 20.96
Allspice 2.09 3.12 15.93
Assault 1.92 4.12 22.90
Basil 11.59 9.95 43.42
Sage 1.27 4.03 41.40
Mace 2.16 3.91 16.20iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6-2. The average time between reboots, its standard deviation, and the maximum
observed uptimes. Values are in days. This was computed for the interval from July,
1989 through January, 1990.



99

stable, until we introduce new bugs as part of our research!

Ironically, the state recovery protocol places such a high load on the servers that it
has exposed several bugs that lurked undetected for years, and only showed up after the
system grew large enough. Races in data structure management routines were exposed,
and bugs in the RPC protocol were also flushed out. Perhaps the most glaring problem is
a case of starvation in the RPC channel allocation code. It is possible for a subset of the
clients to occupy all of a server’s RPC channels while they perform a series of RPCs to
reopen their descriptors. During this time other clients experience timeout errors that
cause them to invoke their recovery protocol again. This effect has been dubbed a
‘‘recovery storm’’. Clients often go through recovery 2 or 3 times after a server boots,
and in one case recovery failed altogether because no client could complete its recovery
protocol. This failure was due to a bug in the host monitor module. Ordinarily it ensures
that only one process is doing the file system recovery at a time. A bug allowed multiple
processes on the same client to do recovery simultaneously, and this increased the load
on the server enough to cause a total failure.

We are currently investigating further refinements to the recovery protocol to reduce
the load on the server. Mary Baker is studing the RPC system during recovery storms
and will be tuning the RPC system in order to avoid this problem. The main defect in the
RPC protocol is the lack of a negative acknowledgment for the case when the server has
no RPC channels left for a new request. (Appendix C has a complete description of the
RPC protocol.) Clients give up and report a timeout instead of backing off and retrying
later. We can also refine what descriptors are reopened during recovery as noted in Sec-
tion 6.3.2.2. Finally, instead of a single RPC per REOPEN, the clients could batch their
requests.

6.8. Conclusion

This chapter has presented a recovery system for stateful servers based on the sim-
ple principal of keeping redundant state on the clients and servers. The servers keep state
in main memory instead of logging it to disk, and they rely on their clients to help them
rebuild their state. This is done via an idempotent state recovery protocol that is initiated
by the clients whenever they detect the server’s state might be inconsistent with their
own. The server attempts to reconcile its state with that of the client, but the server may
detect conflicts and force the client to change its state. In the case of the Sprite file sys-
tem, a conflict might prevent an I/O stream from being successfully reopened, but these
cases are rare in practice.

Overall the experience with the recovery system has been positive. Sprite has been
running nearly continuously in our network for over two years, although there have been
many individual host failures and a number of network partitions. Depending on what a
user is doing he may or may not notice a server reboot. Only if the server is needed for
some resource will a user be delayed until after the recovery protocol. In many cases,
too, the user has the option of aborting an operation that is waiting for recovery, so that
he can continue with other work.
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CHAPTER 7

Integrating User-level Services

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7.1. Introduction

A common approach in modern operating systems is to move system services out-
side the operating system kernel. Debugging is easier because the service is imple-
mented as an ordinary application and the standard debugging tools apply to it. The ker-
nel remains smaller and more reliable. In addition, it is easier to experiment with new
types of services at user-level than by modifying the kernel. These advantages of user-
level implementation of system services have been promoted before by designers of
message-based kernels [Cheriton84] [Accetta86]. However, the main drawback of user-
level services is the performance penalty that comes from message passing and context
switching overhead. There is a conflict between having a high-performance, kernel-
resident service, and an easy-to-manage user-level service. In Sprite, this conflict is
addressed by a hybrid approach that puts performance-critical services (e.g., the file sys-
tem) inside the kernel and that provides a way to cleanly extend the system with addi-
tional user-level services.

In Sprite, user-level services appear as part of the file system; the permits them to
take advantage of the distributed name space and remote access provided by the file sys-
tem architecture. A pseudo-device is a user-level server process that implements the file
system’s I/O interface. A pseudo-device server registers itself as a special file, and the
kernel forwards all I/O operations on the file to the user-level server process. The
mechanisms that support remote device access also support remote access to pseudo-
devices. A pseudo-file-system is a user-level server process that implements the naming
interface (and usually the I/O interface, too). A pseudo-file-system server registers itself
as a prefix in the name space. The prefix table mechanism integrates the pseudo-file-
system into the distributed name space, and the kernel forwards all naming operations on
that domain to the user-level server process.

The advantage of using the file system interface to access user-level services is that
it is a natural extension of the device-independent I/O already present in UNIX. The
write and read operations are equivalent to the send and receive operations of a
message-based system. The ioctl operation is equivalent to a synchronous send-receive
pair of operations, and it provides a simple RPC transport protocol between client appli-
cations and the user-level server process. The server is free to define any ioctl com-
mands it wants to support, so a variety of services can be implemented. Furthermore,
select also applies to the user-level services, so it is possible to wait for devices and ser-
vices simultaneously. In addition to using these familiar I/O operations, the Sprite file
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system also provides a distributed name space and transparent remote access. By
integrating services into the file system they are automatically accessible throughout the
network. There is no need to invent a new name space for new services.

Communication between the kernel and the user-level service is via a request-
response protocol that is much like RPC. The kernel passes a request to the user-level
server process and waits for a response. The protocol uses a buffering system that allows
batched reads and writes in order to reduce the number of context switches required for
kernel-to-user communication. Message buffers for the protocol are in the server
process’s address space to give the server control over the amount of buffer space and to
make it possible to release idle buffer pages. Benchmarks of the request-response proto-
col indicate that communication with a user-level server is about as fast as using the
UNIX pipe mechanism locally. It is much faster in the remote case than the UNIX TCP
protocol because it uses the Sprite network RPC protocol. However, the overhead of the
protocol is high enough to slow I/O-intensive tasks by 25% to 50% in comparison to a
kernel-resident service.

In Sprite, there are currently four main applications for user-level servers: an X11
window system server, a terminal emulation package, a TCP/IP protocol server, and an
NFS file system server. The implementation is fast enough to provide good interactive
response in the window system, even for things like mouse tracking. However, the per-
formance of our TCP/IP protocols is not as good as the kernel-resident UNIX implemen-
tation of these protocols, as expected. The performance penalty is similar to that
observed by Clark with his upcall mechanism [Clark85], which is used to implement net-
work protocol layers outside the kernel in user code. The performance of NFS access
from Sprite is also affected by the user-level implementation. The penalty for compila-
tion benchmarks is about 30% in comparison to a native NFS implementation. The con-
clusion regarding performance is that it is acceptable for many applications, but the
penalty is significant enough that heavily-used services, especially regular file access, are
worth implementing in the kernel.

This chapter is organized as follows. Section 7.2 describes the major applications
for pseudo-devices and pseudo-file-systems that exist in Sprite. Section 7.3 reviews the
file system architecture and describes how pseudo-file-systems and pseudo-devices are
implemented. Section 7.4 describes the request-response protocol between the kernel
and the server process. Section 7.5 evaluates the performance of the implementation,
from the raw performance of the request-response protocol up to a high-level benchmark
executed on the NFS pseudo-file-system. Section 7.6 describes related work done in
other systems. Section 7.7 concludes this chapter.

7.2. User-level Services in Sprite

The X window server is implemented as a pseudo-device. The X server controls the
display and multiplexes the mouse and keyboard among clients, as shown in Figure 7-1.
The clients use write to issue commands to the X server, and read to get mouse and key-
board input. A buffering system, which is described in detail in Section 7.4.2, provides
an asynchronous interface between the window server and its clients to reduce context
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Figure 7-1. The pseudo-device ‘‘/hosts/sage/X0’’ is used by clients of the window sys-
tem to access the X window server on workstation ‘‘sage.’’ The server, in turn, has ac-
cess to the display and keyboard.

switching overhead. There is a pseudo-device for each display in the network, and
access to remote displays is not a special case because the file system provides network
transparency.

The TCP/IP protocols are used by Sprite applications to interface to non-Sprite sys-
tems for mail transfer, remote logins, and remote file transfer. These applications do not
necessarily demand high-performance, and so we implement the TCP/IP protocols at the
user-level as a pseudo-device. Client processes read and write a pseudo-device to use
TCP, and the user-level server process implements the full TCP protocol by reading and
writing packets over the raw network. The internet server defines ioctl operations that
correspond to the 4.3BSD socket calls such as bind, listen, connect and accept. The
ioctl input buffer is used to pass arguments from the client to the server, where the socket
procedure is executed. The ioctl output buffer is then used to return results back to the
client. Each socket library procedure in the client is simply a stub that copies arguments
and results into and out of buffers and invokes the ioctl. In this case, the pseudo-device
mechanism provides the transport mechanism for an RPC-like facility between clients
and the internet server.

Terminal emulators are implemented as pseudo-devices. A terminal emulator pro-
vides terminal-like functions such as backspace and word erase for non-terminal devices
like windows or TCP network connections. Client processes make read and write
requests on the pseudo-device as if it were a terminal. The server implements the client’s
requests by manipulating a window on the screen or a TCP connection to a remote host.
The server provides the full suite of 4.3 BSD ioctl calls and line-editing functions such as
backspace and word erase. In this case, the pseudo-device mechanism provides a gen-
eralization of the 4.3BSD pseudo-tty facility.

A pseudo-file-system server is used to provide access to NFS file systems from
Sprite. The pseudo-file-system server translates Sprite file system operations into the
NFS protocol and uses the UDP datagram protocol to forward the operations to NFS file
servers. The NFS pseudo-file-system server is very simple. There is no caching, of
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Figure 7-2. Two user-level servers are used to access a remote NFS file server. The first
is the NFS pseudo-file-system server. In turn, it uses the UDP protocol server to ex-
change UDP packets with the NFS file server. The figure also depicts requests to the
NFS pseudo-file-system server arriving over the network from remote Sprite clients us-
ing the Sprite network RPC protocol. The arrows indicate the direction of information
flow during a request.

either file data or file attributes, and the server process is single-threaded. In this case,
our goal was to provide NFS access to our users with minimum implementation effort,
not necessarily maximum performance. Most files are serviced by higher-performance
Sprite servers, and NFS is used to access the files left on NFS servers.

Figure 7-2 illustrates the communication structure for NFS access under Sprite.
Note that the UDP network protocol, which is used for communication between the
pseudo-file-system server and the NFS server, is not implemented in the Sprite kernel.
Instead it is implemented by the internet protocol pseudo-device server. This approach
adds additional overhead to NFS accesses, but it illustrates how user-level services may
be layered transparently. The interface between NFS and UDP would not have to change
if the UDP protocol implementation were moved into the kernel. Figure 7-2 also shows
an application accessing the NFS pseudo-file-system from a Sprite host other than the
one executing the pseudo-file-system server. In this case the kernel’s network RPC pro-
tocol is used to forward the operation to the pseudo-file-system server’s host.

7.3. Architectural Support for User-level Services

The operating system architecture is organized in a modular way to support access
to different kinds of objects, including pseudo-file-systems and pseudo-devices. The
architecture includes two major internal interfaces, one for the naming operations listed
in Table 7-1, and one for the I/O operations listed in Table 7-2. Allowing a user-level
server process to implement these interfaces requires the addition of a communication
mechanism between the kernel and the server process. A request-response style protocol
is used so that the interactions between the kernel and the server are similar to those
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-File-System Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Open Open an object for further I/O operations.
GetAttr Get the attributes of an object.
SetAttr Set the attributes of an object.
MakeDevice Create a special device object.
MakeDirectory Create a directory.
Remove Remove an object.
RemoveDirectory Remove a directory.
Rename Change the name of an object.
HardLink Create another name for an existing object.
SymbolicLink Create a symbolic link or a remote link.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DomainInfo Return information about the domain.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 7-1. Naming operations that are implemented by pseudo-file-system servers, and
the DomainInfo operation that returns information about the whole pseudo-file-system.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Read Transfer data from an object.
Write Transfer data to an object.
WriteAsync Write without waiting for completion.
Ioctl Invoke a server-defined function.
GetAttr Get attributes of an object.
SetAttr Set attributes of an object.
Close Close an I/O connection to an object.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7-2. I/O operations on a pseudo-device or an object in a pseudo-file-system. I/O
operations on the object are forwarded to the server using the request-response protocol.

between two Sprite kernels. Stub procedures that use this protocol are invoked through
the internal interfaces, just as stub procedures that use the network RPC protocol are
invoked in the remote case. Thus, the addition of user-level servers adds a third, orthog-
onal case to the basic system structure, in addition to the local and remote cases dis-
cussed in Chapter 3.

A user-level server process implements the I/O interface for a pseudo-device, while
a Sprite file server implements the naming interface for the pseudo-device. A special file
is used to represent the pseudo-device in the name space, just as a special file is used to
represent a device. Thus, all naming operations on the pseudo-device are handled by a
Sprite file server. For the I/O interface to pseudo-devices, the kernel uses a request-
response protocol to forward the I/O operations to the user-level server, and the server is
free to implement the I/O operations however it wants. Remote access to a pseudo-
device is handled just like remote device access. The network RPC protocol is used to
forward the operation to the host running the pseudo-device server (the I/O server for the
pseudo-device). At the I/O server the operation is forwarded to the user-level server
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process with the request-response protocol.

With a pseudo-file-system, a user-level server process implements the naming inter-
face, and the prefix table mechanism automatically integrates the pseudo-file-system into
the distributed file system name space. The pseudo-file-system server registers itself as a
domain in the prefix table of its host, just as the kernel registers domains for any local
disks. The prefix for the pseudo-file-system is exported to the network in the same way
that prefixes corresponding to local disks are exported. To remote clients, the pseudo-
file-system is accessed with the same remote naming module it uses to access remote
domains implemented by Sprite file servers. Thus, there are three cases implemented
below the internal naming interface: 1) the server for a prefix can be the local kernel, 2) a
remote kernel, or 3) a user-level process.

A pseudo-file-system server has the option of implementing the I/O interface as well
as the naming interface. The NFS pseudo-file-system server, for example, implements
both interfaces because all file system operations have to be forwarded to the NFS file
server. However, because the I/O interface is independent of the naming interface, the
pseudo-file-system server can arrange for the kernel to implement the I/O interface to
objects in a pseudo-file-system. In this case the object would be a file, device, or pipe,
but the pseudo-file-system would provide its own naming interface to the object. The
implementation of described below.

7.4. Implementation

The server for a pseudo-device or pseudo-file-system is much like the server in any
RPC system: it waits for a request, does a computation, and returns an answer. In this
case it is the Sprite kernel that is making requests on behalf of a client process, and the
server is a user-level application process. The kernel takes care of bundling up the
client’s parameters, communicating with the server, and unpackaging the server’s answer
so that the mechanism is transparent to the client. The following sub-sections describe
the implementation in more detail, including the I/O streams used by the server, the
request-response protocol between the kernel and the server, and a buffering system used
to improve performance.

7.4.1. The Server’s Interface

A pseudo-device server process has one control stream used to wait for new clients,
and one request stream for each open by a client process. The control stream is created
when the pseudo-device server opens a pseudo-device file. The server distinguishes its
open from future opens by clients by specifying the O_PDEV_MASTER flag. The request
streams are created by the kernel each time a client opens the pseudo-device. The kernel
enqueues a message on the control stream that identifies the new request stream, and the
server reads the control stream for these messages. All further operations between the
client and the server take place using the request stream.

The internal representations of these streams use three types of object descriptors
that correspond to the control stream (PDEV_CONTROL), the server’s end of a request
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Figure 7-3. I/O streams between clients and a pseudo-device server. There is one pair
of kernel object descriptors for each request-response channel between a client and the
server. This channel is created each time a client makes an open on the pseudo-device.
The PDEV_CLIENT descriptor is a stub that references the corresponding PDEV_SERVER
descriptor; it is needed so that client I/O operations invoke different object-specific ker-
nel procedures than the server. There is one PDEV_CONTROL stream for each pseudo-
device, and this is used to notify the server about new PDEV_SERVER streams.

stream (PDEV_SERVER), and the client’s end of a request stream (PDEV_CLIENT). These
descriptors are shown in Figure 7-3. There is one PDEV_CONTROL descriptor per
pseudo-device. It indicates if a server process is active and it has a queue for the
notification messages about new request streams. The PDEV_SERVER descriptor records
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the state of a connection between the client and the server, and it is used during the
request-response protocol described below. The PDEV_CLIENT descriptor is linked to the
corresponding PDEV_SERVER descriptor. The client’s descriptor is distinct because the
type of the object descriptor is used to dispatch through the internal I/O interface, and the
client and server have different sets of object-specific procedures. For example, the
server reads its end of the request stream to learn about new requests, while a client reads
its end of the request data to get input data.

The I/O streams used by a pseudo-file-system server are similar to those of a
pseudo-device server, except that the control stream is replaced by a naming stream. The
naming stream is a request-response stream that the kernel uses to forward naming opera-
tions to the server. The naming stream is created when the pseudo-file-system server
opens the remote link that corresponds to the domain prefix. A special flag,
O_PFS_MASTER flag, distinguishes this open as being by the server process. The client
end of the naming stream is attached to the prefix table entry for the pseudo-file-system.
This causes pseudo-file-system routines to be invoked through the internal naming inter-
face, and these routines use the naming stream to forward the naming operations to the
server.

The pseudo-file-system server has two options when a client makes an OPEN
request. If it wishes to implement the I/O operations on the named object, it can ask the
kernel to create a new request-response stream. This stream is identical to a pseudo-
device request-response stream. Alternatively, the pseudo-file-system server can open an
I/O stream to a file, device, or pipe, and ask the kernel to pass this stream off to the
client. The system has to be able to pass a stream to a remote client. However, this case
is essentially the same problem that process migration causes; an I/O stream must be
moved between hosts. The migration mechanism described in Chapter 5 is reused in
order to implement stream passing. (While passing off open I/O streams to clients is sup-
ported by the kernel, we have not yet developed any major pseudo-file-system applica-
tions that use it.)

7.4.2. Request-Response

The Sprite kernel communicates with the server using a request-response protocol.
The synchronous version of the protocol is described first, and then extensions to allow
asynchronous communication are described. For each kernel call made by a client, the
kernel issues a request message to the server and blocks the client process waiting for a
reply message. The request message includes the operation and its associated parame-
ters, which may include a block of data. The server replies to requests by making an
ioctl call on the request stream. The ioctl specifies the return code for the client’s system
call, a signal to return (useful for terminal emulators), and the size and location of any
return data for the call (e.g., data being read). The kernel copies the reply data directly
from the server’s address space to the client’s.
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7.4.2.1. Buffering in the Server’s Address Space

The kernel passes request messages to the server using a request buffer, which is in
the server process’s address space. An associated pair of pointers, firstByte and lastByte,
are kept in the kernel and indicate valid regions of the buffer. There is one request buffer
for each request stream (and naming stream) that the server has. With this buffering
scheme the server does not read the request messages directly from its request stream.
Instead, the kernel puts request messages into the request buffer, and updates lastByte to
reflect the addition of the messages. The server then reads a short message from the
request stream that has the current values of firstByte and lastByte. The read returns
only when there are new messages in the request buffer, and a server typically uses select
to wait on all of its request streams and control (or naming) stream simultaneously. After
processing the message found between firstByte and lastByte the server updates firstByte
with an ioctl.

The motivation for this buffering system is to move the buffer space out of the ker-
nel and to eliminate an extra copy. The kernel copies a request message directly from the
client process’s address space into the server’s request buffer, and it copies a server’s
reply message directly back into the client’s address space. In contrast, kernel-resident
buffers like those used for UNIX pipes require data to be copied twice each direction,
once from the first process (i.e. the client) into the kernel buffer and once from the buffer
to the second process (i.e. the server). The server process is free to allocate a buffer of
any size, and the buffers do not have to be tied down in kernel space. We shifted to this
buffering scheme after our initial experiences with a prototype implementation that used
fixed-size, kernel-resident buffers. We found that there were often many buffers associ-
ated with idle request streams that were needlessly occupying kernel space. The Sprite
kernel is not demand paged, so these idle buffers occupied real memory. User-space
buffering eliminates this problem, and it gives the server the flexibility of choosing its
own buffer size.

As a convenience to servers, the kernel does not wrap request messages around the
end of the request buffer. If there is insufficient space at the end of the buffer for a new
request, then the kernel blocks the requesting process until the server has processed all
the requests in the buffer. Once the buffer is empty the kernel places the new request at
the beginning of the buffer, so that it will not be split into two pieces. This sequence is
shown in Figure 7-3. No single request may be larger than the server’s buffer: oversize
write requests are split into multiple requests, and oversize ioctl requests are rejected. If
a write is split into several requests, the request stream is locked to preserve the atomicity
of the original write. Reads are not affected by the size of the request buffer because
read data is transferred directly from the server’s address space to the client’s buffer.

7.4.2.2. Buffering for an Asynchronous Interface

The buffering mechanism supports asynchronous writes (‘‘write-behind’’) at the
server’s option. If the server specifies that write-behind is to be permitted for the stream,
then the kernel will allow the client to proceed as soon as it has placed a WRITE request
in the server’s buffer. In enabling write-behind, the server guarantees that it is prepared
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to accept all data written to the stream; the kernel always returns a successful result to
clients. The advantage of write-behind is that it allows the client to make several
WRITE requests without the need for a context switch into and out of the server for each
one. On multiprocessors, write-behind permits concurrent execution between the client
and server. All other requests are synchronous, so the first non-write request forces the
client to block and give the server an opportunity to catch up. The X window server, for
example, can use write-behind because the X interface is already stream-oriented in order
to support batching of requests. Window system clients use write to issue requests to the
server, and the request-response protocol allows these to be buffered up, or batched,
before the server has to respond.

The terminal emulation package also uses write-behind to reduce context switching.
This is useful when the terminal stream is line buffered, which is the default for most
interactive programs. Without write-behind, line buffering would require a context
switch to the terminal server on each line of output. With write-behind many lines of
output can be buffered before a context switch is required. Write-behind is especially
important if the terminal emulator is a client of the window system. Without write
buffering, each line of terminal output would require four context switches: from the
client to the terminal server, from the terminal server to the display server, and then two
more to return to the client. Write-behind, on the other hand, allows many lines of output
to be buffered before requiring these context switches so the display of large amounts of
data is efficient.
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Figure 7-4. This example shows the way the firstByte and lastByte pointers into the re-
quest buffer are used. Initially there are 3 outstanding requests in the buffer. The subse-
quent pictures show the addition of a new request, an empty buffer (the server has pro-
cessed the requests), and finally the addition of a new request back at the beginning of
the buffer.
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Read performance can be optimized by using a read buffer, one per request stream.
The server fills the read buffer, which is in the server’s address space, and the kernel
copies data out of it without having to switch out to the server process. If the server pro-
cess declares a read buffer (it is optional), then it does not see explicit READ requests on
its request stream. Instead, synchronization is done with firstByte and lastByte pointers
as with the request buffer. The server process updates the read buffer’s lastByte after it
adds data, and the kernel moves firstByte to reflect client reads. The read buffer is used
by the X display server, for example. As mouse and keyboard events are generated the
server buffers them in the read buffers that correspond to windows. Later on, when the
client processes get around to reading their input, the kernel copies the data directly out
of the read buffer without paying for a context switch to the server.

7.4.2.3. Buffer System Summary

To summarize the buffering scheme, the server has a request buffer associated with
each request stream, and optionally a read-ahead buffer for each stream. These buffers
are allocated by the server in its own address space, and an ioctl call is used to tell the
kernel the size and location of each buffer. The kernel puts request messages directly
into the request buffer on behalf of the client. The server’s read call on the request
stream returns the current values of firstByte and lastByte for both buffers. The server
updates the pointers (i.e., the request buffer firstByte and read buffer lastByte) by making
an ioctl on the request stream. The ioctl calls available to the server are summarized in
Table 7-3.

7.4.3. Waiting for I/O

Normal I/O streams include a mechanism for blocking processes if the stream is not
ready for input (because no data is present) or output (because the output buffer is full).
To be fully general, pseudo-devices must also include a blocking mechanism, and the
server must be able to specify whether or not the pseudo-device is ‘‘ready’’ for client I/O
operations. One possibility would be for the kernel to make a request of the server

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Server I/O Control Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

IOC_PDEV_SET_BUFS Declare request and read-ahead buffers
IOC_PDEV_WRITE_BEHIND Enable write-behind on the pseudo-deviceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IOC_PDEV_SET_BUF_PTRS Set request firstByte and read-ahead lastByte
IOC_PDEV_REPLY Give return code and the address of the results
IOC_PDEV_READY Indicate the pseudo-device is ready for I/Oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c

cc
c
c
c
c
c

Table 7-3. The server uses these ioctl calls to complete its half of the request-response
protocol. The first two operations are invoked to set up the request buffer, and the
remaining three are used when handling requests.
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whenever it needs to know whether a connection is ready, such as during read, write,
and select calls. Pseudo-devices were originally implemented this way. Unfortunately,
it resulted in an enormous number of context switches into and out of server processes.
The worst case was a client process issuing a select call on several pseudo-devices; most
of the time most pseudo-devices were not ready, so the servers were invoked needlessly.

This problem was fixed by having the kernel maintain three bits of state information
for each request-response connection, corresponding to the readable, writable, and excep-
tion masks for the select call. The pseudo-device server updates these bits each time it
replies to a request, and it can also change them with the IOC_PDEV_READY ioctl. This
mechanism allows the kernel to find out whether a pseudo-device is ready without con-
tacting the server, and it resulted in a significant performance improvement for select. In
addition, the server can return the EWOULDBLOCK return code from a READ or WRITE
request; the kernel will take care of blocking the process (unless it has requested non-
blocking I/O) and will reawaken the process and retry its request when the pseudo-device
becomes ready again. Thus the pseudo-device server determines whether or not the dev-
ice is ready, but the kernel handles the logistics of blocking and unblocking processes.
With respect to this blocking protocol, pseudo-devices behave exactly like the objects
implemented by the kernel.

7.4.4. Future Work

There are two additional aspects of the Sprite file system architecture that have not
been extended (yet) for use with user-level server process: data caching and automatic
recovery. Currently the kernel’s data cache is only used with files, but it could be
extended to cache data for a user-level server. The cache defines its own back-end inter-
face to read and write cache blocks, and the existing read and write procedures for
pseudo-device connections can be reused for this purpose. Additional server ioctl com-
mands need to be defined so the server could invalidate blocks and force other blocks to
be written out. The additional complexity to the kernel would not be that great because
the cache already provides cache-control functions and a generic back-end to support its
use for both local and remote files.

The recovery system described in Chapter 6 can also be extended to support user-
level servers. Currently there is no recovery, so if a server process crashes then the I/O
streams it serviced are closed. The recovery system is based on keeping redundant state,
so to utilize the existing kernel mechanisms the user-level server has to register state with
the kernel for each I/O stream it services. In the case of remote clients, the per-stream
state should be propagated back to the remote client kernel for safe-keeping. The net
result is that per-stream state is duplicated in the kernel (or kernels) involved with the
pseudo-device. This will allow recovery either from a crashed server process or from the
crash of the host running the server process. When the server process is restarted, it
would first see a series of REOPEN requests that include the per-client state previously
registered by the last server process. While this will not be feasible for all user-level
servers, it would be quite straight-forward for the NFS pseudo-file-system. The per-
stream state for the NFS pseudo-file-system server is a 32-byte NFS handle that identifies
the file to the NFS file server, and this state does not change once the stream is opened.
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7.5. Performance Review

This section presents some performance measurements of the implementation. First
the request-response protocol is measured, including the effect of using write-behind.
Then the performance of actual pseudo-devices (for the UDP protocol) and pseudo-file-
systems (for NFS access) is examined.

7.5.1. Request-Response Performance

There are a number of contributions to the cost of the request-response protocol:
system call overhead, context switching, copy costs, network communication, synchroni-
zation, and other software overhead. The measurements below compare the request-
response protocol with UNIX TCP sockts and UNIX UDP sockets, and pipes under both
Sprite and UNIX. The hardware used in the tests is a Sun-3/75 with 8 megabytes of main
memory, and the UNIX is SunOS 3.2.

Each of the benchmarks uses some communication mechanism to switch back and
forth between the client and the server process. Each communication exchange requires
four kernel calls and two context switches. With pseudo-devices, the client makes one
system call and gets blocked waiting for the server. The pseudo-device server makes
three system calls to handle each request: one to read the request stream, one to reply,
and one to update the firstByte pointer into the request buffer. (These last two calls could
could be combined, but currently they are not.) With the other mechanisms the client
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Figure 7-5. This shows the flow of control between two processes that exchange mes-
sages. Initially the server is waiting for a message from the client. The client sends the
message and then blocks waiting for a reply. The client executes again after the server
waits for the next request. Each benchmark has a similar structure, although different
primitives are used for the Send and Receive operations shown here.
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makes two system calls: one to make a request of the server and another to wait for a
response. The server makes two system calls as well: one to respond to the client, and
one more to wait for the next request. The flow of control is shown in Figure 7-5.

Table 7-4 presents the elapsed time for a round-trip between processes for each
mechanism when sending little or no data. The measurements were made by timing the
cost of several thousand round-trips and averaging the results. The measured time
includes time spent in the user-level processes. The costs of communication via pipes
(on UNIX and Sprite) and pseudo-device (Sprite only) are roughly the same in the local
case, which suggests that overhead from context switching and the scheduler, which
applies to all cases, is the dominant cost. In the second half of the table, the client and
server processes are on different hosts so there are network costs. The network cost of
using Sprite RPC and UNIX-to-UNIX UDP is about the same at these small transfer
sizes. However, the Sprite RPC protocol provides reliable message exchanges while
UDP does not. TCP, which does provide a reliable channel, is much more expensive
than using remote pseudo-devices or UDP.

The difference between exchanging zero bytes and one byte using pseudo-devices
highlights the memory mapping overhead incurred in the pseudo-device implementation.
When the kernel puts a request into the server’s buffer it is running on behalf of the client
process. On the Sun hardware only one user process’s address space is visible at a time,
so it is necessary to map the server’s buffer into the kernel’s address space before

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Process Communication Latencyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(microseconds)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Benchmark Bytes Sprite UNIXiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PipeExchange 1 1910 2180iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device 0 2050 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device 1 2440 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
UDP socket 1 - 1940iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TCP socket 100 - 5180iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Pdev 0 4260 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Pdev 1 5000 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote UDP 1 - 4870iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote TCP 100 - 7980iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
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Table 7-4. The results of various benchmarks running on a Sun-3/75 workstation under
Sprite and/or UNIX. Each benchmark involves two communicating processes: PipeEx-
change passes one byte between processes using pipes, Pseudo-Device does a null ioctl
call on a pseudo-device, UDP exchanges 1 byte using a UNIX UDP datagram socket,
and TCP exchanges 100 bytes using a UNIX TCP stream socket. The TCP test moves
larger chunks of data because the TCP implementations delay small messages in an at-
tempt to batch up several small messages into one network packet.
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copying into it. Similarly, when the server returns reply data the client’s buffer must be
mapped in. The mapping is done twice each iteration because data is sent both direc-
tions, and obvious optimizations (i.e. caching the mappings), have not been implemented.

Figure 7-6 shows the performance of the various mechanisms as the amount of data
varies. Data is transferred in both directions in the tests, and the slope of each line gives
the per-byte handling cost. The graphs for UDP and TCP are non-linear due to the mbuf
buffering scheme used in UNIX; messages are composed of chains of buffers, either 112
bytes or 1024 bytes. Messages that are not multiples of 1024 bytes suffer a performance
hit because they can involve long buffer chains.
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Figure 7-6. Elapsed time per exchange vs. bytes transferred, local and remote, with dif-
ferent communication mechanisms: Pseudo-devices, Sprite pipes (local only), and UNIX
UDP and TCP sockets. The bytes were transferred in both directions. The shape of the
UDP and TCP lines is due to the buffering scheme used in UNIX. The buffers are op-
timized for packets that are multiples of 1 Kbyte, and chains of 112-byte buffers are
used with packets of intermediate size.
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The Sprite mechanisms have nearly constant per-byte costs. The unrolled byte copy
routine used by the kernel takes about 200 microseconds per kbyte. Data is copied four
times using pipes because there is an intermediate kernel buffer. The measured cost is
about 800 microseconds per kbyte. Data is copied twice using pseudo-devices, and we
expect a per-kbyte cost of 400 microseconds. Close examination of Figure 7-6 reveals
that the pseudo-device cost is close to 400 microseconds/kbyte with transfers between 1-
kbyte and 2-kbytes, while it is slightly larger than this a smaller buffer sizes. The overall
difference is slight, however, so this anomalies may be due to experimental error.

In the remote case, the pseudo-device implementation uses one kernel-to-kernel
RPC to forward the client’s operation to the server’s host. The RPC adds about 2.4 msec
to the base cost when no data is transferred, and about 4.3 msec when 1 kbyte is
transferred in both directions. There is a jump in the remote pseudo-device line in Figure
5 between 1280 and 1536 bytes when an additional ethernet packet is needed to send the
data.

The effects of write-behind buffering can be seen by comparing the costs of writing
a pseudo-device with and without write-behind. The results in Table 7-5 show a 60%
reduction in elapsed times for small writes. This speed-up is due to fewer context
switches between the processes, and because the server makes one less system call per
iteration because it does not return an explicit reply. The table also gives the optimal
number of context switches possible, and the actual number of context switches taken
during 1000 iterations. The optimal number of switches is a function of the size of each
request and the size of the request buffer (2048 bytes in this case). Preemptive schedul-
ing causes extra context switches. The server has a 2048-byte request buffer and there is
a 40-byte header on requests, so, for example, 28 write messages each with 32 bytes of

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device Write vs. Write-behindiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(Bytes vs. Microseconds & Context Switches)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Size Write Write-Behind Ctx Swtch Opt Swtchiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

32 2330 910 40 36iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
64 2370 940 63 53iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

128 2400 1000 100 84iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
256 2450 1120 178 167iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
512 2590 1420 382 334iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1024 3030 2660 2000 1000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7-5. The elapsed time in microseconds for a write call with and without write-
behind, and the number of context switches taken during 1000 iterations of the write-
behind run vs. the optimal number of switches. The write-behind times reflect a smaller
number of context switches because of write-behind. The optimal number of switches is
not obtained because the scheduler preempts the client before it completely fills the re-
quest buffer.
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data will fit into the request buffer, but only one write message with 1024 bytes of data
will fit. A scheduling anomaly also shows up at 1024 bytes; the kernel’s synchronization
primitives cause the client process to be scheduled too soon, so there are twice as many
context switches as expected.

7.5.2. UDP Performance

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

local pdev

UNIX-to-UNIX

Sprite-to-UNIX

UNIX-to-Sprite

s
d
n
o
c
e
s
i
l
l
i

M

Kilobytes

50

40

30

20

10

0
86420

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 7-7. Timing of the UDP protocol. The receiver is always a UNIX process to
model the use of UDP to communicate with the UNIX NFS server. Each Sprite-to-
UNIX packet exchange requires two request-response transactions with the Sprite UDP
server. The cost of accessing the UDP service via the pseudo-device request-response
protocol is given by the line labeled ‘‘local pdev’’. The small slope of this line indicates
that copy costs are not that significant but process scheduling and context switching
have a large impact on performance. Note that message sizes are multiples of 1024
bytes, which are the best cases for the UNIX UDP implementation; the non-linear ef-
fects from odd buffer sizes, which were shown in Figure 7-6, are not present here.
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The performance penalty of moving a service out of the kernel is demonstrated by
the cost of the UDP datagram protocol, which is implemented in Sprite using a pseudo-
device. The cost to send data via a UDP packet and receive a one-byte acknowledgment
packet is plotted in Figure 7-7. The UNIX-to-UNIX time is the cost of a kernel-based
UDP protocol. The Sprite-to-UNIX and UNIX-to-Sprite times are slower because of the
user-level pseudo-device server on the Sprite side. The cost of sending data to the
pseudo-device server is plotted as the line labeled ‘‘local pdev’’. The difference between
the Sprite-to-UNIX and UNIX-to-UNIX UDP times comes from paying this cost twice,
once for each packet exchanged. There is also an additional penalty when receiving a
large UDP datagram in Sprite. UNIX can do IP fragment reassembly at interrupt time,
while a full context switch is required to the server in Sprite for each fragment of the
message. Output of large messages is not slowed in Sprite because a context switch is
not suffered between output of each packet fragment.

7.5.3. NFS Performance

The performance of the NFS pseudo-file-system was measured with micro bench-
marks that measure individual file system operations, and with a macro benchmark that
measures the system-level cost of pseudo-file-system access. The cost of raw I/O opera-
tions through a pseudo-file-system is obviously going to be higher than the cost of I/O
operations implemented by the kernel. Our NFS access involves two user-level servers
for communication: one for the UDP protocol and one for the NFS protocol. However,
when whole applications are run the effect of pseudo-file-system access is less pro-
nounced.

The tests were run on Sun-3 workstations that run at 16 MHz and have 8 to 16
Mbytes of main memory. The network is a 10 Mbit Ethernet. The file servers are
equipped with 400-Mbyte Fujistu Eagle drives and Xylogics 450 controllers. The ver-
sion of the Sun operating system is SunOS 3.2 on the NFS clients, and SunOS 3.4 on the
NFS file servers.

The four cases tested are:

Sprite A Sprite application process accessing a Sprite file server. File access
is optimized using Sprite’s distributed caching system [Nelson88a].

UNIX-NFS A UNIX application process accessing an NFS file server. ‘‘/tmp’’ is
located on a virtual network disk (ND) that has better writing perfor-
mance than NFS.

Sprite-NFS A Sprite application accessing an NFS file server via a pseudo-file-
system whose server process is on the same host as the application. A
Sprite file server is used for executable files and for ‘‘/tmp’’.

Sprite-rmt-NFS A Sprite application accessing NFS from a different host than the
pseudo-file-system server’s host.

The raw I/O performance for Sprite files, NFS files, and NFS files accessed from
Sprite is given in Table 7-6. In all cases the file is in the file server’s main memory
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Read-Write Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Read 1-Meg UNIX-NFS 320 K/s 25.0 msec/8K
Read 1-Meg Sprite 280 K/s 14.3 msec/4K
Read 1-Meg Sprite-NFS 135 K/s 59.3 msec/8K
Read 1-Meg Sprite-rmt-NFS 75 K/s 106.7 msec/8Kiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Write 1-Meg UNIX-NFS 60 K/s 133.3 msec/8K
Write 1-Meg Sprite 320 K/s 12.5 msec/4K
Write 1-Meg Sprite-NFS 40 K/s 200.0 msec/8K
Write 1-Meg Sprite-rmt-NFS 31 K/s 258.0 msec/8Kiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7-6. I/O performance when reading and writing a remote file. The file is in the
server’s main-memory cache when reading. Sprite uses s 4-Kbyte block size for net-
work transfers while NFS uses an 8-Kbyte block size. The write bandwidth is lower
when accessing the NFS server because it writes its data through to disk while the Sprite
file server implements delayed writes.

cache. Ordinarily Sprite caches native Sprite files in the client’s main memory, too. For
the read benchmark I flushed the client cache before the test. For the write benchmark I
disabled the client cache. The native Sprite read bandwidth is lower than NFS read
bandwidth because Sprite uses a smaller blocksize, 4K verses 8K. The native Sprite
write bandwidth is an order of magnitude greater than NFS write bandwidth because NFS
file servers write their data through to disk before responding, while Sprite servers
respond as soon as the data is in their cache.

The system-level performance of the NFS pseudo-file-system was measured using
the Andrew file system benchmark. This benchmark was developed at CMU by M.
Satyanarayanan [Howard88]. It includes several file-system-intensive phases that copy
files, examine the files a number of times, and compile the files into an executable pro-

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Andrew Benchmark Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sprite 522 secs 0.69
UNIX-NFS 760 secs 1.0
Sprite-NFS 1008 secs 1.33
Sprite-remote-NFS 1074 secs 1.41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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c

c
c
c
c
c
c

Table 7-7. The performance of the Andrew benchmark on different kinds of file sys-
tems. The elapsed time in seconds and the relative slowdown compared to the native
NFS case are given.
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gram. The results of running this benchmark are given in Table 7-7.20 The NFS perfor-
mance is 33-41% slower than using a native kernel implementation of NFS. However,
the table really highlights the difference between the high-performance kernel implemen-
tation of the Sprite file system, the mediocre performance of native NFS, and the further
cost of accessing this via a user-level server process.

7.6. Related Work

There are two ways to characterize the pseudo-file-system and pseudo-device
mechanisms, and thus two ways to compare them against existing work. First, they are a
means of extending the distributed file system with new functionality without modifying
the kernel. The new services benefit from features of the file system like the name space,
remote access, and blocking I/O, but they are free to implement non-file-like functions
via the ioctl call. Second, these mechanisms provide a form of interprocess communica-
tion (IPC). They are oriented towards the client-server model because one server has
connections to one or more clients. Of course, these two characteristics complement
each other. The file system is organized around a client-server model, and the pseudo-
device and pseudo-file-system mechanisms allow the server to be implemented at user-
level instead of inside the kernel.

There are a number of systems that implement system services outside the kernel.
In message passing systems, the kernel just implements processes, address spaces, and a
message-passing or RPC protocol for IPC. Services like the file system are not imple-
mented in the kernel in these systems. The V-system[Cheriton84], Mach[Accetta86],
and Amoeba[Renesse89] are a few examples, and there are others [Bershad89]
[Fitzgerald85] [Scott89]. Sprite, in contrast, takes a hybrid approach where the file sys-
tem is implemented inside the kernel, but other services can be implemented at user-
level. This approach gives the file system a performance advantage; there are no costs
associated with message passing and context switching during regular file access. Furth-
ermore, user-level services in Sprite are well integrated into the system so they benefit
from existing kernel features like the distributed name space, and the integration is tran-
sparent so an application cannot tell if it is accessing a kernel-resident or a user-level ser-
vice.

Another approach to adding system services is to implement them in a run-time
library. As with the message-passing systems, this aproach has the attraction that it is not
necessary to modify the kernel to add new functions. Often these systems support
dynamic linking and/or shared libraries so that applications do not have to incorporate
every library procedure into their address space. Some early distributed file systems
were implemented in the run-time library, such as UNIX United[Brownbridge82]. The
Apollo DOMAIN file system implements an extensible I/O stream facility in its shared
hhhhhhhhhhhhhhhhhhhhhhhhhhh

20 The version we used here has been modified to eliminate machine dependencies, so the
results are not directly comparable with those reported in [Howard88] and [Nelson88a]. The
compilation phase, in particular, is more CPU-intensive in the version used here.
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run-time library [Rees86]. The primary advantage that Sprite has over library approach
is that network communication is handled efficiently by the Sprite kernel, as opposed to
being implemented the library. In the description of the DOMAIN facility, for example,
there is no mention of network access to a library-level stream manager, which suggests
that it would have to be coded explicitly. In Sprite, network access to a user-level server
reuses the kernel network communication facilities.

With respect to integrating user-level servers into the file system, there are two sys-
tems that achieve similar functionality as the Sprite pseudo-device and pseudo-file-
system mechanisms: the UNIX Version Eight stream facility [Ritchie84] and Bershad’s
Watchdog mechanism[Bershad88]. The UNIX stream facility provides byte stream con-
nections between processes, but it can be extended to allow emulation of an I/O device
by a user-level process [Presotto85]. One extension converts ioctl calls on the byte-
stream into special messages that appear in the byte stream. Another extension lets the
server ‘‘mount’’ a stream on a directory. In this case naming operations that encounter
this directory are converted into messages on the byte-stream. The server process inter-
prets the remaining pathnam, and it returns an open I/O stream in response to an open
request.

There are two main differences between the streams facility and the Sprite pseudo-
device and pseudo-file-system mechanisms. First, with the streams facility the server has
a single byte-stream connection that it must multiplex among clients. In Sprite, there are
distinct request streams for each client, and the request-response nature of the communi-
cation is explicit. The Sprite user-level server is simpler because it does not have to jug-
gle several service requests over a single byte-stream. The second difference is that the
Sprite file system provides a distributed name space and transparent remote access. A
single instance of a pseudo-device or pseudo-file-system server can be shared by all hosts
in the Sprite network. In contrast, each streams server is private to the UNIX host,
although it is possible to have server-to-server communication via network protocols.

The watchdog facility proposed by Bershad and Pinkerton [Bershad88] provides a
different way to extend the UNIX file system. A ‘‘watchdog’’ process can attach itself to
a file or directory and take over some, or all, of the operations on the file. The watchdog
process is an un-privileged user process, but the interface is implemented in the kernel so
the watchdog’s existence is transparent. Watchdogs may either wait around for guarded
files to be opened, or they are created dynamically at open-time by a master watchdog
process. There are two advantages of the Sprite user-level server mechanisms over
Watchdogs. First, the Sprite read-write interface can be asynchronous to reduce context
switching costs. Second, network access to the user-level server is provided by the Sprite
kernel, while Watchdogs were implemented in a stand-alone UNIX system. One advan-
tage of the Watchdog facility is that the server can choose which operations to imple-
ment, and defer the rest to the kernel. The granularity is coarser in Sprite, with the user-
level server implementing either the I/O interface or the naming interface, or both.

Thus, the main advantages of the Sprite pseudo-device and pseudo-file-system
mechanisms have over other systems are the features provided by the Sprite distributed
file system architecture. This include the distributed name space, transparent remote
access, and blocking I/O. Also, the existing kernel mechanisms for data caching and
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automatic error recovery can be extended for use with user-level services, although I
have not had the time to implement these extensions.

7.7. Conclusion

Pseudo-file-systems and pseudo-devices are an extension of the architecture already
present in Sprite to support its distributed file system. Pseudo-file-systems are treated as
another domain type that is automatically integrated into the name space by the prefix
table mechanism. Remote access is handled by the kernel with the same mechanisms
used to access remote Sprite servers. Pseudo-devices are named and protected just like
other files, while pseudo-file-systems define their own naming and protection systems.
By making the service appear as part of the file system the existing open-close-read-write
interface is retained. Byte stream communication is via read and write, and read-ahead
and write-behind can be used for asynchronous communication. Ioctl is available for
operations specific to the service, and can be used as the transport mechanism for a user-
level RPC system. The standard interface means that the implementation of a service
could be moved into the kernel for better performance without having to change any
clients.

Our performance measurements show a distinct penalty for user-level implementa-
tion. We knew in advance this would be true, but we have found the performance of our
user-level services to be acceptable. However, an important lesson from this work is that
user-level servers are not the best solution for all problems. Much of the recent research
in operating systems has focused on means of pushing services, including the file system,
out of the kernel. However, because the file system is so heavily used, it makes sense to
optimize its performance with a kernel-based implementation. On the other hand, it is
also important to have a means to move functionality out of the kernel so that the kernel
does not get bloated with extra features. The pseudo-file-system and pseudo-device
mechanisms provide a convenient framework for user-level services, and they benefit
from mechanisms already present in the Sprite kernel to support the distributed file sys-
tem.
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CHAPTER 8

Caching System Measurements

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

8.1. Introduction

This chapter motivates the need to have a stateful system with a review of the Sprite
caching system[Nelson88b] and some measurements of its behavior on our network. In
Sprite, both clients and servers cache file data in their main memories to optimize I/O
operations. The main memory caches improve the performance of reading data because
network and disk accesses are eliminated if recently-used data is found in the cache.
Write performance is also improved because data is allowed to age in the cache before
being written back to the server. Data is written to the server or the disk in the back-
ground so applications do not have to wait for the relatively slow disks. Some write
operations are eliminated because data is deleted or overwritten before it is written back.
With this caching system the performance of file I/O can scale with CPU speeds; it is not
always limited by disk or network performance.

This chapter provides a follow-on study to Nelson’s thesis [Nelson88b]. Nelson
studied the effects of different writing policies on the Sprite caching system and the
interactions of the caching system and the virtual memory system. He used a set of
benchmarks to evaluate the system. The results presented here are based on statistics
taken from the system as it is used for day-to-day work by a variety of users. The raw

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Summary of Caching Measurementsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Files requiring consistency callbacks 1% opens
Files uncachable because of sharing 8% opens
Dirty files re-read by a client 13% opens
Files concurrently read shared 36% opensiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average client cache sizes 17%-35% memory
Average server cache sizes 25%-61% memory
Average client read miss ratios 36% bytes
Average client write traffic ratios 53% bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-1. Summary of results. The first half of the table contains cache consistency re-
lated figures. The second half contains cache effectiveness figures.
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data is in the form of about 450 different counters that are maintained in the kernel and
periodically sampled. File servers were sampled hourly, and clients were sampled 6
times each day. From this data it is possible to compute I/O rates, cache hit ratios, the
number of RPCs serviced, and other statistics. The main results presented in this chapter
are summarized in Table 8-1. There are too many statistics to fit them all in this chapter.
Additional measurements are presented in Appendix B, and the raw data for the period
from July through December, 1989 is available to other researchers. The study period is
interesting because the system more than doubled in size over the study period with the
addition of new high-performance workstations. Table 8-2 lists the characteristics of the
hosts that made up the Sprite network during the study period.

The remainder of this chapter is organized as follows. Section 8.2 reviews the
Sprite caching system and the algorithm used to maintain consistency of client caches.
Section 8.3 presents results on the cache consistency overhead. Section 8.4 presents
measurements of the effectiveness of the caching system during normal system activity.
Section 8.5 shows how variable-sized caches dynamically adapt to clients and servers of
different memory sizes. Section 8.6 concludes the chapter.

8.2. The Sprite Caching System

This section reviews the Sprite caching system originally described in [Nelson88a].
The important properties of Sprite’s caching system are: 1) diskless clients of the file sys-
tem use their main memories to cache data, 2) clients use a delayed-writing policy so that
temporary data does not have to be written to the server, and 3) the servers guarantee that
clients always get data that is consistent with activity by other clients, regardless of how
files are being shared throughout the network. Servers also cache data in their main
memory and use delayed writes, and the implementation of the client and server caches is
basically the same.

8.2.1. The Sprite Cache Consistency Scheme

The Sprite file servers must solve a cache consistency problem: the same data may
be cached at many locations, and it is important that these versions remain consistent
with each other. In order to provide a consistent view of file data, the file servers keep
state about how their files are being cached by clients, and they issue cache control mes-
sages to clients so that clients always get the most up-to-date file system data. This
approach is a centralized approach to cache consistency, with the burden of maintaining
consistency placed on the file servers. Nelson describes the two cases that servers have
to address, concurrent write sharing and sequential write sharing [Nelson88b]. These
cases are illustrated in Figure 8-1.

Sequential write sharing occurs when Client A reads or writes a file that was previ-
ously written by Client B. In this case, any cached data for the file in Client A’s cache
from an earlier version is invalid. A version number is kept for each file to detect this
situation. Each time a file is opened for writing the file server increments the version
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Characteristics of Sprite Hostsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Model MIPS Mbytes User Birthdayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint Sun 3/180 2 16 FileServer Jun 3 ’87
Oregano Sun 3/140 2 16 FileServer Jun 10 ’88
Allspice Sun 4/280 9 128 FileServer Jul 17 ’89
Assault DS3100 13 24 FileServer Sep 13 ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sloth Sun 3/75 2 8 Spriter Sep 17 ’87
Mace Sun 3/75 2 8 Faculty Oct 11’87
Murder Sun 3/60 3 16 Spriter Oct 20 ’87
Paprika Sun 3/75 2 12 Spriter Oct 20 ’87
Sage Sun 3/75 2 12 Spriter Oct 20 ’87
Thyme Sun 3/75 2 16 Spriter Oct 21 ’87
Nutmeg Sun 3/75 2 8 Spriter Dec 13 ’87
Fenugreek Sun 3/75 2 12 Spriter Jun 15 ’88
Basil Sun 3/75 2 8 GradStudent Oct 5 ’88
Mustard Sun 3/75 2 8 GradStudent May 11 ’89
Sassafras Sun 3/75 2 8 GradStudent Jun 9 ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Lust SPUR MP3 6 32 Testing Apr 23 ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Anise Sun 4/260 9 32 Testing Apr 10 ’89
Jaywalk Sun 4c 12.5 12 Testing Aug 3 ’89
Covet Sun 4c 12.5 24 GradStudent Sep 29 ’89
Burble Sun 4c 12.5 12 GradStudent Oct 4 ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Kvetching DS3100 13 24 Spriter Jul 14 ’89
Cardamom DS3100 13 24 Faculty Jul 26 ’89
Pride DS3100 13 24 Spriter Jul 22 ’89
Hijack DS3100 13 24 Spriter Aug 1 ’89
Piracy DS3100 13 24 Shared Aug 3 ’89
Pepper DS3100 13 24 Shared Aug 8 ’89
Parsley DS3100 13 24 Faculty Aug 20 ’89
Violence DS3100 13 24 Secretary Aug 22 ’89
Piquante DS3100 13 24 Testing Aug 23 ’89
Forgery DS3100 13 24 GradStudent Aug 24 ’89
Subversion DS3100 13 24 GradStudent Aug 24 ’89
Apathy DS3100 13 24 GradStudent Aug 26 ’89
Gluttony DS3100 13 24 GradStudent Sep 13 ’89
Clove DS3100 13 24 GradStudent Oct 11 ’89
Garlic DS3100 13 24 GradStudent Oct 16 ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 8-2. Characteristics of the hosts in the Sprite network. They are sorted by
machine type and their ‘‘Birthday,’’ the first recorded day they ran Sprite. (None of the
Sun2s used in the initial development of Sprite are listed here.) The MIPS rating for
each type of host is an approximation based on the Dhrystone benchmark; it is given as
a rough comparison. ‘‘Mbytes’’ is the size of main memory of each host. User
classifications are also given; Spriters are members of the Sprite development team;
GradStudents are students working on other projects; Testing are hosts used primarily
for testing and debugging.
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Figure 8-1. Concurrent and sequential write sharing of files introduces a cache con-
sistency problem. In the case of sequential sharing the server issues a write-back com-
mand to the client caching the valid copy of the file, and the clients keep a version
number to detect stale data. During concurrent sharing, the caching of the file is dis-
abled on the clients and all I/O operations go through to the server’s cache.

number. When a client opens a file it compares the version number returned from the file
server with the version number of its cached file. If the client is opening for reading, a
version number mis-match means it should discard (flush) its cached version. If the
client is opening for writing there are two cases. One case is where the client has the pre-
vious version in its cache, and it is about to generate a new version. In this case the ver-
sion number returned from the server will be one greater than the client’s, and the client
does not need to flush its cache. In the second case (server version number > client ver-
sion + 1), however, the client does not have the most recent version of the file, so it
flushes its old version. This flush ensures that partial updates of a cache block do not
result in out-of-date data in the rest of the block. Finally, the delayed writing policy of
the Sprite caching system means that the file server may not have the current version in
its cache. In this case the file server issues a write-back command to the last writer
(Client B) of the file before responding to the open request by Client A. The write-back
command is suppressed if opening client is also the last writer.

Concurrent write sharing occurs when a file is open for writing on Client A during
the same period of time the file is open for reading or writing on Client B. A simple
approach to this situation is taken in Sprite. Caching of the shared file on the clients is
disabled, and I/O operations go through to the cache on the file server. By disabling the
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remote caches, there is no danger of stale data being read on Client B while Client A is
generating the valid version of the file. Studies in [Thompson87] and [Ousterhout85]
indicate that concurrent write sharing is rare, so this simple approach should not degrade
performance. Although these previous studies were based on trace data taken from
timesharing systems, measurements presented below from our network show similar
behavior in Sprite.

Not all distributed file systems provide the same level of consistency as Sprite. In
Sprite, the caches on different hosts do not interfere with concurrent or sequential file
sharing. Other systems often loosen their consistency guarantees concerning concurrent
sharing. A typical approach is to write back data when a file is closed so that sequential
sharers see valid data, but not to make any guarantees when a file is concurrently shared.
This approach is used in NFS[NFS85] and AFS[Howard88].

A related problem with these systems (NFS and AFS) is that there is no provision
for delayed writes on the clients. In these systems, processes are blocked at close-time
while data is written back to the server. However, measurements presented below indi-
cate that as much as 50% of the data generated by a client is deleted or overwritten
shortly after being created. A delayed-write policy means that this short-lived data never
even gets written to the server, saving network bandwidth and server CPU cycles.

Other file systems do provide consistent sharing during concurrent access, but they
differ from Sprite in the way they support consistency. Apollo DOMAIN [Levine85]
requires explicit locking calls, and it flushes data upon unlock to ensure consistency.
Files are memory-mapped in DOMAIN, so the locks and flushes are done by the virtual
memory system. LOCUS [Popek85] uses a token-passing scheme to pass ‘‘ownership’’
of a file among sharers. Burrow’s thesis describes a system which uses tokens at the byte
level [Burrows88]. In a token-passing system a client must have the token for a file in
order to access it, and the server is in charge of circulating the token among clients so
that each receives a fair percentage of ownership time.

The relative merits of the Sprite cache consistency scheme and the token-passing
schemes depend on the nature of concurrent write sharing. If files are open concurrently
but actually used in a sequential manner, Sprite’s scheme would be worse. In this case,
all Sprite client writes would go over the network, while with a token-based scheme a
client could do several writes to its cache before giving up the token and writing back
dirty data. If the files really are written concurrently, however, then Sprite’s scheme will
require less message traffic. In this case a token-passing system requires two extra RPCs
on each I/O, one from the client to the file server to request the token, and one from the
file server to another client to retrieve the token. This assumes the worst case where dif-
ferent clients make successive I/O operations. (With any consistency scheme there is
still a need for synchronization so that concurrent I/O operations do not interfere. Nei-
ther Sprite, MFS, or LOCUS piggy-back lock acquisition with token passing, so syn-
chronization is not considered in this comparison.) Finally, if concurrent write sharing is
rare, then performance is not as important as simplicity. Sprite’s scheme is simpler for
two reasons. First, all conflict checking is done at open-time, while in a token-passing
system conflict checking is done at every read and write. Second, there is no need to cir-
culate a token among Sprite clients.
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8.3. Sharing and Consistency Overhead Measurements

The amount of file sharing and the consistency-related traffic was measured by the
file servers, and the results are given in Table 8-3. This data was collected by monitoring
all open operations over a 20-day interval. The table lists values for each file server, and
the combination of all servers together that represents the total file system traffic. The
various cases in the table are explained below.

Non-File
This value indicates the number of directories, symbolic links, and swap files that
were opened. These files are not cached on the clients. Swap files are not cached
so that VM pages really leave the machine upon page-out. Directories and links
are not cached in order to simplify the implementation. These could be cached,
but the servers would have to issue cache control messages when directories were
updated or links were changed.

Can’t Cache
This value indicates the total percentage of files opened that were not cachable on
the clients. The difference between this column and the ‘‘Non-File’’ column is the
percentage of files that were concurrently write shared. Mint, the root server,
experiences a lot of concurrent write sharing, 14%. Nearly all of the concurrent
write sharing occurs on a shared load average database used to select hosts for pro-
cess migration. A small amount is due to accidental sharing of append-only log
files. Overall, 8% of the opens are of concurrently write-shared files.

Read Sharing
This value counts the number of files that were open for reading by more than one
process at a time, either on the same or different clients. This case is relatively fre-
quent; it happens in about 36% of the cases. Note that this value does not count
files that lingered read-only in a client’s cache while not used, which is not

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
File Sharing and Cache Consistency Actionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Num Non- Can’t Read Last Server Action

Server Opens File Cache Sharing Writer Write-back Invalidateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint 4536840 10% 24% 42% 15% 0.202% 0.045%
Oregano 1171180 34% 35% 37% 8% 0.073% 1.575%
Allspice 2863430 36% 36% 26% 14% 0.267% 0.010%
Assault 491080 49% 49% 29% 2% 0.308% 0.049%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Combined 9062527 23% 31% 36% 13% 0.212% 0.232%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-3. File sharing by clients and the associated server consistency actions over a
20-day period, October 29 through November 19, 1989. The results are given for each
server, and then for the combination of all the servers together, which represents the to-
tal file system traffic.
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measured because the servers do not need to track this to keep caches consistent.

Last Writer
This value counts the files that were generated in a client’s cache and then re-read
or re-written by the same client before the 30 second delayed write period expired.
Each of the servers except Assault sees a significant amount of this case, about
13% overall. This percentage is quite close to the percentage of files open for writ-
ing (15%21), which suggests that most data is re-read or re-written shortly after it is
generated. Mint, for example, has log files that can be repeatedly updated by the
same client. Oregano serves ‘‘/tmp’’, and compiler and editor temporaries account
for the reuse of dirty files. Allspice has the system source directories, and compiler
output often gets re-read by the linker. Assault is too lightly loaded to experience
much of this behavior.

Server Action
This value indicates how often the servers had to issue cache control messages.
‘‘Write-back’’ indicates how many times the last writer of a file was told to write
its version back to the file server. ‘‘Invalidate’’ indicates how many clients had to
stop caching a file they were actively using because it became shared after it was
opened. (The number of cache invalidations because of sequential write-sharing
was not measured. As described above, this is done by the clients by checking ver-
sion numbers, so it is not measurable on the servers.) Write-backs happen in less
than 1% of the cases, which indicates that sequential write-sharing (within the
delay period) between clients is rather rare. Invalidations are also rare, except on
Oregano as described below.

The invalidations on Oregano are due to a temporary file used by pmake, our paral-
lel compilation tool that uses process migration. pmake generates a temporary file con-
taining the commands to be executed on the remote host. Initially, this file is cached on
the host running pmake. During migration it is open by both the parent (pmake) and the
child (a shell that will execute the commands on the remote host). These processes share
a read-write I/O stream that the parent used to write the file and the child will use to read
it. When the child migrates to the remote host the file server detects this as a case of con-
current write sharing and issues a write-back and invalidate command to the host running
pmake. If the parent closed the file before the migration this would appear as sequential
write sharing and contribute to the ‘‘Write-back’’ column instead.

Trace data from UNIX time sharing systems indicates that concurrent write sharing
is very rare, and so is sequential write sharing between different users[Thompson87].
The UNIX files that are write-shared are database-like files such as the user-login data-
base and system log files. Thompson found that these UNIX files only accounted for 1%
or 2% of the open traffic. In Sprite, concurrent write sharing occurs on the same kind of
files (databases and logs), but it accounts for 8% of the opens. Virtually all of this shar-
ing is due to a database of host load averages that is used to select idle hosts as targets of
hhhhhhhhhhhhhhhhhhhhhhhhhhh

21 Refer to Appendix B, Table B-3.
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migration. The database is updated once each minute by each host, so it is heavily
shared. The process that updates a host’s entry keeps the database file open all the time,
thus forcing it to be uncachable on the clients. The heavy open traffic to this database
occurs because virtually every compilation accesses the database in order to find an idle
host on which to execute.

Note that the measurements in this section are in terms of files open, not bytes
transferred. Thus they give an overall measure of file sharing, but not necessarily a
measure of how effective caching will be. Measurements presented below indicate how
much I/O traffic there is to uncachable files and what the cache hit ratios are.

8.4. Measured Effectiveness of Sprite File Caches

This section presents results on the I/O traffic of the clients and servers, and it
shows how effective the caches are during normal system use. The results of the study
back up our original hypothesis that performance is dependent on the amount of memory
on the clients, the more the better[Nelson88a]. It is not sufficient to upgrade the CPU
performance without also increasing memory size. Extra memory reduces the load on
the server by reducing paging traffic and increasing the effectiveness of the file cache. If
memory is too small on a client then its performance is dominated by paging traffic, and
the benefits of a faster CPU are lost. The other result is that because the client caches are
so effective, it takes a relatively large cache on the file servers to yield any further
benefit, such as reducing disk traffic.

8.4.1. Client I/O Traffic

This section presents the overall I/O traffic of the clients. Two metrics are given,
I/O traffic from applications to the cache, and network traffic to the file servers. The net-
work traffic includes all system effects, including paging and traffic to uncachable files.
It represents the total load on the server from the client. (More detailed breakdowns of
the traffic are given in the next sub-section.) Results for individual client workstations
are given. The I/O traffic of a particular client is a function of its use. In our network the
Sun3s place the most load on the servers, even though they are the slowest. This is
because the Sun3s are the principal machines used for Sprite development, which
includes large compilation jobs and debugging sessions. The other hosts are used more
by the newer Sprite users, who apparently place less load on the system.

Table 8-4 gives the cache size and I/O rates for the Sun3 clients. The average, stan-
dard deviation, and maximum observed values are given for the megabytes of cache,
bytes/second transferred to and from the cache, and bytes/second transferred to and from
the server. The data was obtained by recording the total amount of data transferred by a
client every three hours. The rates were computed over 3-hour intervals. The standard
deviation gives a variance over different times of day. The maximum value is the largest
rate observed in all the 3-hour intervals. The very high maximum rates (e.g. 100
Kbytes/sec on Sassafras) result from large simulation jobs that page constantly for long
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sun3 Client I/O Traffic (Bytes/Second)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Cache Size Cache Traffic Network Traffic
Host Meg dev max bytes/s dev max bytes/s dev maxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

8 Megiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Basil 0.98 0.80 3.88 323 1027 8496 382 1255 15476
write 149 381 3916 195 556 5545iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mace 1.33 0.91 4.88 742 1773 22222 581 1595 15643
write 275 512 4343 277 596 4441iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mustard 1.75 1.02 4.41 841 1894 11250 551 2063 29487
write 323 729 6364 333 1433 24254iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Nutmeg 1.45 1.00 4.59 427 1770 20121 389 3943 57170
write 147 416 4198 165 695 8869iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sassafras 1.45 1.09 4.48 785 1601 14408 1271 6785 104469
write 214 526 5842 656 4658 72701iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sloth 1.12 0.94 4.31 929 2519 25140 1096 4126 75486
write 360 1315 17582 575 2006 32038iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 1.35 0.96 4.42 660 1764 16940 689 3294 49622
write 243 647 7041 352 1657 24641iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
12 Megiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Fenugreek 3.84 1.81 8.23 904 2248 15198 628 2256 32142
write 311 751 7141 322 922 8786iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Paprika 2.46 1.57 7.01 740 1806 13673 833 2866 32487
write 262 570 4560 295 746 6476iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sage 3.26 1.89 8.38 804 2873 66661 698 2722 56987
write 302 1962 79765 355 1340 42117iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 3.19 1.76 7.88 819 2309 31844 715 2615 40539
write 293 1094 30489 326 1003 19126iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
16 Megiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Murder 5.79 2.96 12.59 6528 10736 73579 5863 10580 72507
write 572 1574 18699 564 1527 15544iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Thyme 5.23 2.77 11.84 1128 2979 29651 744 2064 30169
write 351 1533 29700 383 1567 29857iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 5.51 2.86 12.22 3833 6857 51615 3309 6322 51338
write 462 1554 24200 473 1547 22700iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-4. Cache sizes and I/O traffic on the Sun3 clients, which are listed according to
their memory size. The averages for each memory size are also given. Read traffic is on
the first row for each host; write traffic is on the second row. These numbers were ob-
tained by recording the bytes transferred by each client every three hours and computing
the rate over that interval. The standard deviations give the variability of the rates over
different 3 hour intervals, including intervals of relative inactivity. The ‘‘Cache
Traffic’’ is the rate that bytes are transferred to and from the cache. The ‘‘Network
Traffic’’ is the rate that bytes are transferred to and from the server over the network.
Network traffic includes paging traffic, accesses to uncachable files, and traffic from
cache misses.
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periods of time. The clients average about 1100 bytes/sec in combined read-write traffic
to their cache, and about the same amount of traffic over the network. While the cache
eliminates some network accesses, paging traffic adds additional network accesses. (A
more detailed breakdown of the remote I/O traffic is given in the next sub-section.) The
clients with larger memories have higher data rates, although this difference is most
likely because they are used by the more intensive Sprite developers. Also, Murder has
the tape drive used for nightly dumps, so its I/O traffic is skewed by its nightly scans of
the file system.

In comparison, the study of UNIX timesharing hosts by Ousterhout et al
[Ousterhout85] found per-user I/O rates of 300-600 bytes/sec when averaged over 10
minute intervals, and rates of 1400 to 1800 bytes/sec when averaged over 10 second
intervals. These are rates for active users only, and they do not include paging traffic.
The average rates obtained for Sprite clients, about 1100 bytes/sec, include periods of
inactivity. The I/O rates of an active Sprite client are better estimated by the peak rates
given in Table 8-4. The peak I/O rates to the client caches range from 12000 bytes/sec to
over 60000 bytes/sec, averaged over three hours. These large peak I/O demands result
from large jobs that page heavily for long periods of time.

Table 8-5 gives the I/O traffic on the DECstation clients. Note that the I/O rates to
the cache of the DECstations are not much different than on the Sun3s, even though the
DECstation CPU is six times faster. The highest average rates on the Sun3 clients (i.e.,
1479 bytes/sec on Thyme) are higher than the highest average rates on the DECstation
clients (i.e., 1232 bytes/sec on Gluttony). This similarity suggests that the nature of the
user effects the long term I/O rates to the cache, and the speed of the workstation just
increases the burstiness. (The 3-hour sampling granularity of these statistics precludes
measurement of short term rates.) The main difference between the DECstation and the
Sun3 clients is that there is less network traffic generated by the DECstations. Each
DECstation has 24 Mbytes of physical memory, while the Sun3s only have 8, 12, or 16
Mbytes. The extra memory on the DECstations reduces paging activity and it allows for
larger file caches.

8.4.2. Remote I/O Traffic

The I/O traffic presented above includes remote traffic that is due to uncachable
data, such as directories and the shared migration database, and it includes traffic due to
page faults. Improved statistics were taken over an 11-day period to determine the con-
tributions to the network traffic. Results for read traffic are given in Table 8-6. Cache
miss ratios range from 17% to 65%, and the overall read miss rate is about 36%. (This
average does not include Murder, the client that does nightly tape backups.) Perhaps the
most significant result, however, is that cache misses only account for 29% of the remote
data being read. The rest is due to page faults (38%) and uncachable data (33%). The
page faults are mainly to read-only code files (23%) as opposed to the swap files used for
dirty pages (15%). Thus the caches are effective in reducing network traffic, but there is
still a considerable load from paging traffic and uncachable data.



132

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DECstation 3100 Client I/O Traffic (Bytes/Second)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Cache Size Cache Traffic Network Traffic
Host Meg dev max bytes/s dev max bytes/s dev maxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Apathy 7.62 1.32 7.94 723 1810 13986 242 833 6272
write 323 1047 8755 210 452 3293iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cardamom 6.61 2.72 16.43 411 942 5387 136 379 3555
write 166 389 3974 98 229 1670iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Clove 7.27 1.73 7.94 452 759 3000 179 544 3669
write 196 257 1267 113 165 811iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Forgery 6.38 2.43 11.65 384 935 8942 174 460 4011
write 159 504 5841 121 446 5437iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Gluttony 5.13 2.02 7.94 861 3456 30498 951 3485 32875
write 371 667 5241 205 332 2623iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Hijack 6.06 2.29 10.25 466 1711 18747 644 2731 41967
write 233 534 4600 247 431 5981iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Kvetching 4.76 2.00 7.94 886 1524 11638 895 2113 22260
write 247 584 5654 231 508 3505iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parsley 6.88 2.13 8.94 471 971 7506 211 712 7767
write 213 532 5240 121 229 1667iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pepper 6.99 2.54 13.93 671 2242 18808 285 1640 16792
write 339 1630 16812 201 1232 16478iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pride 4.57 3.05 13.45 505 2252 19031 435 5618 42357
write 210 612 5624 223 1835 25106iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Subversion 6.99 2.02 8.94 304 850 5856 105 531 6437
write 138 339 2678 70 166 1330iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Violence 6.48 2.95 8.94 325 1649 18396 132 3732 51252
write 144 321 2461 100 260 2212iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 6.31 2.27 10.36 512 1592 13483 356 1898 19935
write 214 618 5679 159 524 5843iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 8-5. Cache sizes and read traffic on the DECstation clients, all of which have 24
Mbytes of main memory. Read traffic is on the first row for each host; write traffic is on
the second row. These numbers were obtained by recording the bytes transferred by
each client every three hours and computing the rate over that interval. The standard de-
viations give the variability of the rates over different 3 hour intervals, including inter-
vals of relative inactivity. The ‘‘Cache Traffic’’ is the rate that bytes are transferred to
and from the cache. The ‘‘Network Traffic’’ is the rate that bytes are transferred to and
from the server over the network. Network traffic includes paging traffic, accesses to
uncachable files, and traffic from cache misses.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Read Trafficiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Host Cache Read Miss Remote Miss Code Data Uncacheiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Kvetching 3.21 533.23 16.84% 879.94 10.20% 12.96% 24.07% 52.61%
Fenugreek 5.89 394.46 18.63% 118.70 61.92% 27.68% 4.73% 5.51%
Parsley 10.58 170.08 22.10% 67.60 55.59% 30.42% 3.39% 9.99%
Piracy 9.89 176.19 25.45% 71.75 62.48% 30.80% 1.32% 5.33%
Paprika 2.79 225.23 27.22% 578.91 10.59% 12.81% 1.79% 74.72%
Mustard 3.86 352.80 30.96% 245.64 44.47% 30.30% 19.64% 5.31%
Thyme 5.21 368.75 41.14% 642.34 23.62% 12.41% 3.44% 60.30%
Mace 1.13 314.15 41.93% 338.31 38.94% 41.27% 16.42% 3.05%
Burble 0.91 18.39 44.55% 41.63 19.68% 62.17% 7.47% 10.38%
Sassafras 1.95 511.76 48.61% 463.85 53.63% 24.85% 17.11% 4.12%
Sage 2.13 432.27 49.24% 550.76 38.64% 30.05% 28.48% 2.60%
Gluttony 6.47 126.59 49.27% 281.46 22.16% 15.81% 1.38% 60.58%
Sloth 1.09 219.48 64.67% 415.00 34.20% 38.61% 23.39% 3.36%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
combined* - 3843.36 35.74% 4695.88 29.25% 25.64% 11.96% 32.91%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Murder 4.84 1330.80 89.37% 1338.38 88.86% 5.89% 1.12% 4.02%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 8-6. Remote read traffic over an 11-day period. ‘‘Cache’’ is the average mega-
bytes of cache. ‘‘Read’’ is megabytes read from the cache, and ‘‘Miss’’ is the cache
miss traffic. ‘‘Remote’’ is the megabytes read from the file server, and ‘‘Miss’’ is the
contribution from cache misses to this amount. ‘‘Code’’ is remote bytes read due to VM
page faults on read-only code pages. ‘‘Data’’ is remote bytes read due to VM page
faults on data pages. ‘‘Uncache’’ is uncachable bytes read, mainly directories and the
migration database.
* Murder is eliminated from the combined rates to eliminate effects from its nightly
backups.

The large read traffic to uncachable data stems from a single application program
that a few users run in order to continuously display the number of hosts available for
process migration. The program scans the complete load average database every 15
seconds, and the clients that run this program stand out clearly in Table 8-6. With most
clients, uncachable data accounts for just a few percent of the network read traffic. How-
ever, running this application can cause uncachable data to account for as much as 60%
of the network read traffic! It is important to emphasize that this application is not
needed for normal system operation. If the clients that run this program are factored out,
then the remote traffic due to uncachable data is only 4% of the server read traffic, with
44% from cache misses and 52% from page faults. This is a more reasonable view of the
network traffic.

Table 8-7 gives the contributions from the cache (51%), paging (37%), and uncach-
able files (11%) to the network write traffic. (The remaining 0.63% stems from writes to
remote devices and remote windows.) This table also gives a true picture of the cache
write traffic ratio, which is the ratio of bytes written to the server to the bytes written to
the cache. The client traffic ratios range from 27% to 72%, averaging about 53%. These
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Write Trafficiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Host Cache Write Ratio Remote Cache Swap Uncacheiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
burble 0.91 23.06 27.02% 23.29 26.76% 17.29% 55.95%
parsley 10.58 120.05 39.77% 66.87 71.40% 6.45% 22.03%
paprika 2.79 109.37 39.78% 80.89 53.79% 29.58% 16.52%
piracy 9.89 106.00 43.72% 57.09 81.18% 2.95% 15.55%
mustard.ds 3.86 181.29 43.91% 131.11 60.72% 24.74% 14.17%
sassafras 1.95 207.82 46.52% 235.98 40.97% 50.14% 7.72%
fenugreek 5.89 134.35 53.63% 103.22 69.80% 14.89% 15.15%
kvetching 3.21 103.92 57.37% 185.06 32.22% 61.24% 6.31%
mace 1.13 179.20 57.69% 172.36 59.98% 31.72% 8.23%
sage 2.13 171.91 57.76% 244.25 40.65% 51.78% 5.79%
thyme 5.21 162.49 62.29% 161.58 62.64% 26.36% 8.83%
sloth 1.09 114.13 66.05% 201.03 37.50% 54.04% 8.46%
gluttony 6.47 94.84 72.13% 99.69 68.63% 5.91% 25.37%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
combined - 1708.44 52.65% 1762.42 51.04% 36.98% 11.29%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-7. Remote write traffic over an 11-day period. ‘‘Cache’’ gives the average
cache size, in Mbytes. ‘‘Write’’ gives the Mbytes written to the cache during the period.
‘‘Ratio’’ gives the percentage of the ‘‘Write’’ column that was written out of the cache
back to the server. ‘‘Remote’’ gives the amount of data written to the server, in Mbytes.
This is broken down into the contribution from cache write-backs (‘‘Cache’’), paging
traffic (‘‘Swap’’), and uncachable files (‘‘Uncache’’).

measurements indicate that the 30 second aging period for dirty cache data is effective in
trapping short-lived data in the cache; about half the data is never written back. How-
ever, paging can be significant for some of the clients. Sassafras, for example, is a com-
pute server used for long-running simulations (and processing of the data presented
here!), and its paging traffic accounts for about half of its network traffic. Write traffic to
uncachable files is also significant, and the bulk of this comes from periodic updates of
the migration database by each client.

8.4.3. Server I/O Traffic

This section presents the I/O traffic from the standpoint of the file servers. In the
case of a file server it is interesting to compare the traffic to its cache to the traffic to its
disks. Two metrics are given, the ‘‘File Traffic’’ and the ‘‘MetaData Traffic.’’ Metadata
is data on the disk that describes a file and where it lives on disk. This includes the
descriptor that stores the file’s attributes, and the index blocks used for the file map. The
‘‘File Traffic’’ represents I/O to file data blocks as opposed to the metadata information.
The combination of file traffic and metadata traffic gives the total disk traffic for the file
server.

Figure 8-2 has the server I/O traffic for a combination of all servers averaged over a
6-month study period. The graphs indicate that the server caches are effective for reads,
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Figure 8-2. Server I/O traffic averaged from July 8 to December 22, 1989. The left-hand
graph has read traffic and the write-hand graph has write traffic. The total disk traffic is
the sum of ‘‘fileBytes’’ and ‘‘metaDataBytes’’.

but less effective for writes. Client caches trap out most of the short-lived data so most
data written to a server ends up being written to disk. The write graph highlights the
large amount of write traffic to metadata. File descriptors have to be updated with access
and modify times, so just reading a file ultimately causes its descriptor to be written to
disk. This effect has been noted by Hagmann[Hagmann87], who converted the CEDAR
file system to log metadata changes, which reduced metadata traffic considerably.

Table 8-8 summarizes the results of a 20-day study period, from October 29 through
November 19, 1989. This study was made after a bug was fixed that prevented continu-
ously updated files from being written through to disk. With this bug present, Mint’s
traffic ratio was about 50% for file data, while the other servers had write traffic ratios of
70% to 80% or more. Mint’s low traffic ratio prompted a search for a bug in the cache
write-back code, and this 20-day study was made after it was fixed. Additional per-
server measurements of I/O traffic are given in Appendix B, along with the detailed
results of the 20-day study period.

The cache on Mint, the root server, is effective in eliminating reads (40% misses in
the 20-day study), but not so good at eliminating writes (94% traffic ratio in the 20-day
study). Its read hits occur on frequently-used program images and the load average data-
base. About half the write traffic to Mint is to the load average database, which is
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Server Traffic Ratiosiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Host Read ReadAll Write WriteAlliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint 40% 43% 94% 542%
Allspice 52% 57% 74% 107%
Oregano 72% 83% 86% 225%
Assault 82% 92% 55% 121%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Combined 54% 59% 77% 179%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-8. Summary of the results of a 20-day study of server I/O traffic. The ‘‘Read’’
and ‘‘Write’’ columns give the percentage of cache data that was transferred to and from
disk. A low percentage means that the caches were effective in eliminating disk traffic.
The ‘‘ReadAll’’ and ‘‘WriteAll’’ columns include traffic to metadata so they give the to-
tal disk traffic ratio. A more detailed breakdown of these results is given in Appendix B.

updated by each client once per minute. The metadata write traffic on Mint is quite high
due to these frequently modified files. Furthermore, the 128-byte descriptors are written
32 at time in 4K blocks so there is extra traffic from unmodified descriptors.

Allspice and Oregano are directly comparable because they store the same type of
files (many files were shifted from Oregano to Allspice during the 20-day study period).
Allspice’s cache is about 10 times the size of Oregano’s and it is clearly more effective.
This is to be expected because the server’s cache is a second-level cache, with the
clients’ caches being the first level. The server’s caches have to be much larger than the
client’s caches because the locality of references to their cache is not as good.

It is also interesting to see how the caches skew the disk traffic towards writes. Dur-
ing the 20-day study period, the traffic to the server caches was about 22% writes. The
traffic to the server disks was 26% metadata writes and 20% data writes. If the metadata
traffic is discounted as an artifact, then the data writes accounted for 40% of the disk
traffic. The skew towards writes at the disk level should continue as the server caches get
larger and more effective at trapping reads.

The server caches also have to be large enough in relation to the amount of disk
space the server has. Measurements by Burrows [Burrows88], for example, indicate that
75% of the file system data is not accessed in over a week, and only 10% of it is modified
in that time. Measurements of Sprite indicate that over 90% of the file system data has
not been read over a day, and over 50% has not been read in over a month. These results
hint that the active ‘‘working set’’ of a file system is probably much smaller than the
amount of disk storage, and that a server cache that is a few percent of its disk space
could cache a reasonable file system working set. In our system Mint has one 300-Mbyte
disk and a 9-Mbyte cache, which is a ratio of cache to disk of 3%. Allspice has 2.4
Gbytes of disk storage and an 80-Mbyte cache, which is a ratio of about 3.3%. These
two servers have rather effective caches. Oregano has four 300-Mbyte disks and about
the same cache size as Mint, which is a ratio of 0.75%, and its cache is much less effec-
tive. Assault has 600 Mbytes of disk, and about 8 Mbytes of cache, for a ratio of 1.3%.
It is a lightly used server, however, and half its disk space is rarely used at all. If the
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second disk is ignored then it also has a cache/disk ratio of about 3%, and its cache is
also effective. Of course, it is dangerous to generalize from these few data points, but it
seems clear that a server cache size that is a few percent of its disk space is better than a
cache of 1% or less than the disk space.

8.5. Variable-Sized Caches

An important feature of Sprite caches is that they vary in size in order to make use
of all available memory. Nelson[Nelson88b] explored ways of trading memory between
the file system and the virtual memory system, which needs memory to run user pro-
grams. The basic approach he developed was to compare LRU times (estimated ages)
between the oldest page in the FS cache and the oldest VM page and pick the oldest one
for replacement. Nelson found that it was better to bias in favor of the VM system in
order to reduce the page fault rate and provide a good interactive environment. The bias
is achieved by adding a bias to the LRU time of the VM system so that its pages appear
to be referenced more recently than they really were. We have chosen a bias against the
file system of 20 minutes. Any VM page referenced within the last 20 minutes will never
be replaced by a FS cache page. This policy is applied uniformly on all hosts, and it
adapts naturally to both clients and servers. Servers use most of their memory for a file
cache, while clients use most of their memory to run user programs.

8.5.1. Average Cache Sizes

Table 8-9 gives the average and maximum cache sizes as measured over the study
period. The file servers are listed individually. The clients are grouped according to the
amount of physical memory and processor type of the host, and the results are averaged.
The adaptive nature of the cache sizes is evident when comparing clients and servers
with the same memory size; the file servers devote more of their memory to the file
cache. This difference is not achieved via any special cases in the implementation, but
merely by the uniform application of the 20-minute bias against the file system described
above.

The cache occupies a larger percentage of main memory as the memory size
increases, indicating that the extra memory is being utilized more by the file cache than
by the VM system. This trend is most evident on the Sun3 clients, of which there is a
good population size, and in which the Sprite implementation is the most mature. Dou-
bling the physical memory on a Sun3 client more than doubles the average cache size on
the client; it increases from 17% to 34% of the physical memory.

The variability of the client caches is indicated by the standard deviation and the
maximum observed values. The variability tends to increase as the memory gets larger,
indicating that the cache is trading more memory with the VM system. The DECstations
have lower variability because their cache was limited to about 8.7 meg during most of
the study period. (This limitation is a software limit that has been recently lifted.)
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cache Size (Megabytes)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Host Mem Average Std Dev Maximumiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Allspice* 128 67.27 52% 22.14 17% 78.13 61%
Assault 24 7.49 31% 4.55 19% 16.50 69%
Mint 16 9.03 56% 1.23 8% 11.80 74%
Oregano 16 8.59 54% 1.77 11% 12.06 75%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sun3 8 1.35 17% 0.96 12% 4.42 55%
Sun3 12 3.19 27% 1.76 15% 7.88 66%
Sun3 16 5.51 34% 2.86 18% 12.22 76%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sun4 12 2.09 17% 1.73 14% 6.87 57%
Sun4 24 6.00 25% 3.70 15% 13.43 56%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DS3100 24 6.31 26% 2.27 9% 10.36 43%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-9. Cache sizes as a function of main memory size and processor type, averaged
over the 4-month study period. The average, standard deviation, and maximum values
of the observed cache sizes are given. The sizes are megabytes and percentage of main
memory size. The file servers are listed individually. The rest of the clients are aver-
aged together based on CPU type and memory size.
* Allspice’s cache was limited to at most 78.13 Mbytes.

The results from the servers show that Mint and Oregano can only devote a little
over half their memory to their file cache. The reason they cannot use more is due to the
increase in their kernel size as they accumulate more data structures that support their
caches. (This effect is measured in more detail below.) In the case of Allspice, however,
the limitation on its cache size is due to an artifact of the memory mapping hardware on
the Sun4. The file cache uses hardware page map entries, and if it gets too large it can
cause extreme contention for the few remaining map entries. Its cache is fixed arbitrarily
at about 80 meg because of this. Even with this limitation, the cache on Allspice is 10
times the size of the cache on Mint and Oregano, and measurements presented in Section
8.4.3 indicate that a server needs a large cache like this for the cache to be really effec-
tive.

8.5.2. Other Storage Overhead

One of the negative lessons we learned is that the file servers can use up a consider-
able amount of their memory in data structures that support the file system. The data
structures include stream and object descriptors described in Chapter 3, buffer space for
RPC server processes, hash table buckets, and other supporting data structures. The total
kernel size and the number of stream and object descriptors were measured, but a com-
plete accounting of a file server’s memory use was not attempted.

A complete breakdown of the object descriptors kept by both clients and servers is
given in Table 8-10. The table gives the average number of object descriptors of various
types, as well as the average cache size. The top row of the table gives the size of each
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average Object Descriptor Usage, August-September ’89iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Stream File RmtFile Pdev Ctrl Dev Rmt Cache State
Host (100) (268) (216) (288) (140) (136) (72) Bytes Bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint 2722 927 130 17 250 6 1 9498624 589500
Oregano 956 1337 44 60 21 9 0 8806400 484864iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Basil 181 0 255 27 11 5 9 1232896 83824
Fenugreek 217 0 520 31 12 5 5 3575808 145668
Mace 177 0 506 25 9 5 2 1421312 136280
Murder 210 72 1879 33 12 6 2 6873088 458304
Mustard 231 0 302 34 14 4 4 1679360 100916
Nutmeg 157 0 225 25 8 4 0 1298432 73164
Paprika 199 0 390 30 11 5 3 2486272 115216
Sage 213 0 625 32 12 4 5 3260416 168100
Sassafras 93 0 239 15 5 4 0 2187264 66488
Sloth 207 0 421 32 12 5 8 1015808 123788
Thyme 190 0 447 31 11 5 1 6209536 126772iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AveSun3 189 7 528 29 11 5 4 2840018 145320
AveSun3* 187 0 393 28 11 5 4 2436711 114022iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cardamom 143 0 359 32 8 4 2 5992448 102868
Forgery 237 0 571 53 15 4 6 6332416 165376
Hijack 174 0 409 38 10 5 1 6017024 118840
Kvetching 308 0 641 58 14 4 3 4898816 188680
Parsley 119 0 440 26 7 4 3 6828032 116168
Pepper 69 0 406 12 5 4 1 6483968 99368
Piquante 94 0 400 19 7 4 1 5238784 102868
Piracy 72 0 176 14 4 4 0 1691648 50352
Pride 141 0 753 31 8 4 1 5431296 187412
Subversion 129 0 326 30 9 4 1 6172672 93832
Violence 122 0 284 27 7 4 2 5578752 82988iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AveDS3100 146 0 433 31 9 4 2 5515078 118977iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AvgClient 167 3 481 30 10 4 3 4177548 132149
AvgClient* 165 0 414 30 9 4 3 4049189 116618iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-10. The average number of object descriptors during August and September
1989. The first row indicates the size of the descriptor in bytes. The last column gives
the size of all the host’s descriptors together. For comparison, the average cache size of
the host is also given. The other columns give a raw count of the number of object
descriptors of different types. ‘‘Stream’’ counts stream descriptors, including the sha-
dow stream descriptors on the servers. ‘‘File’’ is the file descriptors kept by the file
servers, and ‘‘RmtFile’’ is the remote file descriptor kept by the clients. ‘‘Ctrl’’ is a
per-pseudo-device descriptor, and there is one on both the file server and the I/O server.
‘‘Pdev’’ is a per-pseudo-device-connection descriptor, and these are only on the I/O
server. ‘‘Dev’’ is device descriptors. ‘‘Rmt’’ is remote descriptors, either remote dev-
ices or remote pseudo-devices.
* Murder is factored out of the starred (*) averages in order to remove the skew intro-
duced by its nightly scans of the file system when doing tape backup.
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type of descriptor. The last column gives the average state size, which is obtained by
multiplying the descriptor size by the average number of descriptors and summing over
all descriptor types. The average cache size is given for comparison. On average, the
amount of memory used for object descriptors is not that great. The file servers average
around 0.5 Mbytes of descriptors, and the clients average over 0.1 Mbytes of descriptors.
A client workstation averages about 180 open I/O streams at any given time. Of these,
about 70 are related to pseudo-devices: about 10 control streams to server processes, and
about 30 request-response streams (‘‘Pdev’’) between clients and servers. (There are two
streams for each ‘‘Pdev’’ descriptor, one for the client and one for the server.) About 90
streams are to files, and there are a handful of streams to devices and remote devices or
pseudo-devices. The large number of streams to files is due in part to the I/O streams to
program images (executable files) and paging files.

The kernel size and cache size for the root file server over a four month period are
given in Table 8-11. The kernel size includes all code and data in the kernel, but it does
not include the cache blocks. Mint has 16 Mbytes of main memory, and on average its
kernel occupies about 4 Mbytes and its file cache about 9 Mbytes. For comparison, the
kernel code and data of a diskless client occupies about 1.1 Mbytes. Note that the max-
imum observed cache size plus the maximum observed kernel size is greater than the 16
Mbytes available on Mint. The server’s memory usage increases over time as it accumu-
lates more state information, and this reduces the memory available to the cache. Table
8-11 also gives the number of stream and file descriptors maintained by the root server,
and the amount of memory they occupy. The growth of the network is also evident in the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mint’s Kernel Size vs. Cache Size and Object Descriptorsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Month Streams Files Cache Meg Kernel Meg
Avg Max Avg Max Avg Max Avg Maxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JUL 0.20 0.46 0.26 0.59 9.22 11.80 3.67 4.77
2116 4860 878 1982iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

AUG 0.20 0.49 0.26 0.58 8.99 11.57 3.78 5.20
2066 5149 867 1962iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SEP 0.27 0.76 0.28 0.60 9.07 11.36 4.07 5.62
2797 7981 925 2006iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

OCT 0.23 0.68 0.26 0.59 8.98 11.16 3.96 5.48
2421 7101 870 1973iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8-11. The top row for each month gives the size in megabytes of various com-
ponents of the kernel. ‘‘Streams’’ is stream descriptors. ‘‘Files’’ is file descriptors.
‘‘Cache’’ is the size of the file cache, and ‘‘Kernel’’ is the size of the kernel’s code and
data. ‘‘Kernel’’ includes the ‘‘Streams’’ and ‘‘Files’’ space, but not the ‘‘Cache’’ space.
The bottom row for each month gives the average and maximum number of object
descriptors. A stream descriptor is 100 bytes (!) and a file descriptor is 312 bytes.
Note: The maximums for the different fields did not necessarily occur at the same time.
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increase in the number of stream descriptors from July to October.

A comparison of the kernel sizes given in Table 8-11 to the amount of memory used
for stream and file descriptors indicates that there is still a considerable amount of
memory unaccounted for. There are two main contributions to the extra memory used by
the file server’s kernel. First, there is a ‘‘high-water’’ effect in the kernel’s memory allo-
cator. We use a binned allocator that keeps blocks of memory (‘‘bins’’) reserved for
objects of a given size. The allocator adds chunks of real memory to its bins, and then it
allocates from its bins. It does not attempt to coalesce memory or return chunks of
memory to the rest of the system. Thus, the real memory behind each bin will remain at
a high-water mark associated with the peak demand for objects of that size.

A second significant use of memory comes from the RPC server processes of the
file servers. Packet handling is optimized by keeping pre-allocated buffer space for each
server process, about 20 kbytes. Also, each kernel process has a private stack that is 16
kbytes. A Sprite kernel starts with 2 RPC server processes, and more are created upon
demand. A file server can have up to 50 RPC server processes, which can account for 1.8
Mbytes in stacks and buffer space. This memory use could be reduced by introducing a
shared buffer pool, or setting the limit below 50 server processes. This limit is somewhat
arbitrary because the server processes are multiplexed among clients.

8.6. Conclusion

This chapter has reviewed the Sprite caching system and reported on its perfor-
mance when supporting day-to-day work in our user community. The performance
results indicate that the caches on diskless clients are effective in satisfying read requests
(miss traffic is about 36%) and in eliminating write-backs to the servers (the write traffic
ratio is about 53%). It appears that adding memory to a Sprite client reduces paging
activity and increases the effectiveness of the file caches, as expected. However, because
the client caches are so effective, the caches on the servers need to be rather large in
order to reduce their disk traffic. When comparing server cache size to its disk storage, it
appears that a server cache that is a few percentage of its disk capacity can be effective in
cutting disk traffic.

The straight-forward approach to cache consistency, which is to disable client
caches during concurrent write sharing, has worked out fine in our environment. There is
very little consistency-related traffic between the servers and clients. In less than 1% of
the opens did the servers have to issue cache control messages, so the approach does not
add much overhead. Where there is concurrent write sharing the files are cached in the
main memory of the server, and accesses to the shared data is not too expensive. Traffic
to uncachable files (mainly the shared migration database) was significant. It accounted
for 8% of the opens, 4% of the data read from the servers, and 11% of the data written.

A few interesting negative results stand out. First, our file servers generate a lot of
traffic to their file descriptors, often just to update the access time attribute that is stored
there. This traffic is an artifact our disk sub-system, which has never been tuned.
Current research in Sprite focuses on log-structured file systems which should address
this problem. Second, paging activity on a client with a small memory can dominate its
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regular I/O traffic. This traffic does not reflect a problem with our caching system, how-
ever, and it highlights the benefit of putting large memories on workstations.

Finally, the one negative result that is a function of the caching system concerns the
amount of state maintained by the servers. File servers can keep a considerable amount
of data structures to support the file system, enough to limit the size of their file system
caches. This limit does not have a large performance impact as yet, mainly because the
client caches are so effective. However, it implies that servers need a lot of memory, not
just for caching data but also to maintain the data structures that support their clients’
caches.
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CHAPTER 9

Conclusion

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

9.1. Introduction

This chapter reviews the important contributions of this dissertation. The general
approach of this dissertation is to use a shared network file system as the base for a distri-
buted system. The central role of the file system requires a number of novel approachs to
the problems of naming, remote access, and state management. These issues are dis-
cussed below.

9.2. The Shared File System

The Sprite distributed file system provides access to devices and services, as well as
files. The file system’s mechanisms for naming, remote access, and state management
are applied to all of these resources. The file system acts as a name service, in contrast to
other distributed systems that introduce a separate network name service. There are two
primary advantages of this approach. First, users and applications are presented with the
same system model that they have in a stand-alone system. Resources are accessed via
the standard open-close, read-write file system interface regardless of their type and net-
work location. The complexity of the system model is not increased by the underlying
distribution of the system. The second advantage of this approach is that the operating
system mechanisms provided to support remote file access are reused when accessing
devices and services. Implementation of these mechanisms inside the operating system
kernel allows for efficient sharing of the mechanisms. Furthermore, by reusing the file
system mechanisms instead of adding a separate name service, file access is optimized
because only a single server is involved.

Remote device access and remote service access create problems that are not
present with remote file access. First, devices and arbitrary user-implemented services
have indefinite service times, while file accesses have bounded service times. Unlike
other distributed file systems, the Sprite file system has general remote waiting and syn-
chronization facilities that account for indefinite service times. Long-term waiting is
done without using up critical resources on the servers. The select operation can be used
to wait on any collection of files, devices, and services, regardless of their location in the
distributed system. Another problem created by the addition of devices and services is
that these resources are not co-located with their name; the I/O server for a device or ser-
vice can be different than the file server that implements their name. The internal
software architecture cleanly distinguishes its naming and I/O interfaces so that different
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servers can implement these interfaces.

The distributed name space is implemented with a light-weight naming protocol
that is unique to Sprite. Each host’s view of the name space is defined by a prefix table
that is maintained as a cache. Remote links in the name space trigger the addition of new
prefixes to a host’s prefix table, and the server for a prefix is located using a broadcast
protocol. There are two primary advantages of Sprite’s distributed naming mechanism.
First, it reuses the directory lookup mechanisms of the file servers so there is no duplica-
tion of effort between a name service and the file service. Second, the system is decen-
tralized; no host has to have a complete picture of the system configuration. The system
adapts to changes in the configuration automatically so it is easy to manage the system as
it expands. In contrast to other distributed naming systems, Sprite’s naming system is
optimized towards the local area network environment by eliminating globally replicated
configuration information used in larger scale naming systems.

9.3. Distributed State Management

While Sprite presents a simple system model to users and applications, internally it
must solve some difficult problems in distributed state management. Unlike many sys-
tems that use ‘‘stateless’’ servers for simplicity, Sprite servers keep track of how their
resources are being used so they can provide high-performance services and retain the
semantics of a stand-alone system. There are three interrelated features of Sprite that
contribute to the complexity of its state management: data caching in the main memory
of diskless clients, migration of actively executing processes among hosts in the network,
and automatic recovery from the failure of hosts.

Sprite’s caching system motivates the need to keep accurate state about the use of
resources. The caching system provides high performance access to file data, yet accu-
rate state about the caching system is required so the servers can maintain the consistency
of cache data. While the caching system was originally described elsewhere [Nelson88a]
[Nelson88b], this dissertation describes how the state that supports the caching is main-
tained efficiently during normal operations, during the migration of processes between
hosts, and across server failures. Additionally, this dissertation presents a follow-on per-
formance study of the caching system as it is used to support real users.

The servers protect their state by trusting their clients to keep redundant copies of
the state. The servers, in turn, maintain their own state on a per-client basis so they can
clean up after clients fail. The state includes a record of open I/O streams, as well as
caching information. If a server fails, it can rebuild its state with the help of its clients
through a state recovery protocol. An important property of the state recovery protocol is
that it is idempotent; it can be invoked by the clients at any time and it will always
attempt to reconcile the server’s state with that of the clients. Idempotency is important
because network partitions can lead to unexpected inconsistencies between the state on
the client and the server.

Maintaining a server’s state is complicated by process migration and the con-
currency present in the system. I/O streams can be shared by processes which can
migrate to different hosts, and distributed state changes have to be made to account for
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this. Processes can operate on a stream concurrently, so the distributed state changes
have to be carefully synchronized. This dissertation describes a callback scheme to coor-
dinate the distributed state changes with a deadlock-free algorithm. Migration also
creates a problem with shared I/O streams because processes on different hosts can end
up sharing an I/O stream and its current access position. The system uses shadow stream
descriptors on the I/O server that keep stream offset when a stream is shared among
processes on different hosts.

9.4. Extensibility

Sprite takes a novel approach to system extensibility. User-level services are tran-
sparently integrated into the distributed file system; they appear as device-like objects
(pseudo-devices) or as whole sub-trees of the file system (pseudo-file-systems). Pseudo-
devices are used to implement network protocols, terminal emulators, and the display
server for the window system. Pseudo-file-systems are used to provide access to foreign
kinds of file systems from within Sprite. This approach is higher-level than in a
message-passing system that just provides a simple name service and a low-level com-
munication protocol. There are additional features such as remote synchronization and
state management that are provided by the distributed file system and available to the
user-level services. This approach is in contrast with the commonly found approach of
moving major system services like the file system out of the operating system kernel.
Instead, the file system implementation is kernel-resident for efficiency and so that its
mechanisms can be shared by user-level services.

9.5. Future Work

This dissertation has addressed a broad range of issues that concern a shared distri-
buted file system for a local area network environment. There are few areas in which
further work is possible. First, the maximum size of the system is still unknown. We
would like to support system of up to 500 clients and their associated servers, but we
have only had experience with a system one tenth this size. A full-sized system will
stress the limits of our fully-shared file system. In particular, the broadcast-based naming
protocol will have to be augmented to deal with a local-area internetwork in which
broadcast may not reach all hosts. Efficiently managing the system’s state as the system
grows may also pose difficulties. Already our file servers devote a considerable amount
of memory to supporting data structures as well as their file caches.

Regrettably, the extension of the caching and recovery systems to include pseudo-
devices and pseudo-file-systems has not been implemented, yet. (It’s just a small matter
of programming!) Using the cache for our NFS pseudo-file-system, for example, would
improve access times considerably. The recovery system could also be useful to a
variety of user-level services. With these extensions in place, a user-level service would
be a full partner with the kernel-resident services.
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9.6. Conclusion

Several key ideas are presented in this dissertation. First, the fully-shared file sys-
tem takes you most of the way towards a well integrated distributed system. Cooperative
work is easy, workstations are just ‘‘terminals’’ that provide access to the computing
environment, and the administrative effort is comparable to that in a large timesharing
system instead of many independent systems. Second, high performance and good relia-
bility are possible using techniques that exploit large memories (for caching) and redun-
dancy in the distributed system (for recoverability). With this approach, the best way to
improve the performance of your workstation is to add more memory as opposed to
adding a local disk. Larger memories reduce paging by the VM system and increase the
effectiveness of the file cache. Local disks add heat, noise, and administrative hassles,
and economies of scale argue for keeping large disks on shared file servers. Finally,
while extensibility of the system is important, it is also important to keep system exten-
sions well integrated into the computing environment. The pseudo-device and pseudo-
file-system mechanisms achieve this goal, plus they extend features built into the kernel
to user-level services, in particular the distributed name space and remote access.
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APPENDIX C

Sprite RPC Protocol Summary

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1. Protocol Overview

This is a brief description of the Sprite Remote Procedure Call (RPC) network pro-
tocol. The protocol is used by the Sprite Operation System kernel for communication
with other Sprite kernels. It is modeled after the Birrell-Nelson protocol that uses impli-
cit acknowlegdements so that in the normal case only two packets are exchanged for each
RPC. Fragmentation is also implemented to improve performance of large data transfers,
and a partial retransmission scheme is used if fragments are lost. The description given
here includes a detailed look at the format of the RPC packet header and its relation to
other protocols. A more detailed description can be found in [Welch86a].

The Sprite RPC protocol is used for a request-response style of communication
between the operating systems on two Sprite hosts. One host, called the ‘‘client’’, issues
a request to the other, called the ‘‘server’’, who responds to the request by taking some
action and returning a response. The technique of implicitly acknowledging requests and
responses [Birrell84] is used so that normally only two messages are exchanged for each
RPC. The server’s response message implicitly acknowledges the reciept of the client’s
request messages, and the client’s next request message implicitly acknowledges the
server’s previous reply.

There is a ‘‘soft binding’’ between clients and servers in order to implement the
implicit acknowledgment scheme. Each Sprite host has a number of RPC client channels
(or ports), and each Sprite host has a set of RPC server processes identified by a port
number. Initially clients do not specify a server port and the server assigns a free server
process to a new request. The port number of the server is returned to the client and the
client directs subsequent requests from that channel to the same server process. Thus
there is a sequence of RPCs between a given client channel and a given server process.
The soft binding between the client channel and the server process is broken by the
server when it does not receive a new request from the client after a threashold period of
time. To close the connection it sends ‘‘close-acknowledge’’ message to the client to
make sure that the last reply was successfully received.

Request and reply messages are allowed to be larger than the maximum transmis-
sion size of the underlying transport protocol (either IP or ethernet). Large messages are
divided into fragments, and the same implicit acknowledgement scheme is used. Upon
reciept of all the fragments of a request, for example, the server takes an action and
returns a single reply message. The individual fragments are not individually
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acknowledged.

The RPC protocol uses an unreliable datagram protocol to deliver messages, either
raw ethernet packets or the IP datagram protocol. In the case of packet loss the client, or
requesting host, takes the active role to ensure that the RPC completes. It sets up a
timeout and will retransmit its request if it does not get a response before the timeout
period expires. If its request is fragmented, only the last fragment is retransmitted. The
server responds to retransmissions with explicit acknowledgment messages. If the
request is fragmented the server’s acknowledgment message indicates which fragments
have been received. If a reply message is fragmented and some fragments are lost, the
client retransmits its request and the packet header indicates which fragments of the reply
have been received. After these ‘‘partial acknowledments’’ the sender of a fragmented
message will retransmit only the lost fragments.

Note that the protocol does not rely on fragmentation by the underlying transport
protocol. There are two reasons for this. The first is that by providing its own fragmen-
tation the RPC protocol can provide efficient transfer of large blocks of data without
using a specific transport protocol. Second, datagram protocols cannot implement partial
retransmission in the case of lost fragments. They discard the whole packet if any frag-
ments are lost. This is undesirable when communicating between hosts of different
speeds where overrun at the slow host is not uncommon. The RPC protocol header
includes a desired inter-fragment delay that hosts use to throttle down their transmit rate
when sending fragmented messages to slower hosts.

The protocol header has some support for crash detection and graceful handling of
server reboots. The header includes a bootID that is reset to the network time each time a
host boots up. This allows other hosts to detect reboots by noting a change in the bootID.
There is also a flag bit in the header that hosts set while they are booting. This indicates
to other hosts that the booting hosts is active but not yet ready to service requests. This is
useful for servers that take a number of minutes to check the consistency of their disks
before providing service.

The data transferred in the request and response messages is divided into two parts.
The first part is called the ‘‘parameter’’ area, and it is used to transmit integers and other
simple data structures. The second part is called the ‘‘data’’ area and is usually a larger
block uninterpreted data. This format is oriented towards procedures that have a few
small parameters and one large block of data. This format also allows us to implement
simplified byte swapping to handle communication between hosts with different architec-
tures. A field in the RPC packet header identifies the sender’s byte ordering, and the
receiver is responsible for byte swapping the RPC packet header and the parameter area.
These two parts of the packet are restricted to contain only integers so they can be byte
swapped without knowing their exact contents.

2. RPC Packet Format

A packet sent by the RPC protocol is divided into four parts, the datagram header,
the RPC header, the RPC parameter area, and the RPC data area. This whole packet may
be futher encapsulated by the link level transport, i.e. ethernet. Table 8-2 defines the
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RPC Packet Formatiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bytes Field Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0-3 version Version Number/Byte Ordering
4-7 flags Type and flag bits
8-11 clientID Client Sprite ID
12-15 serverID Server Sprite ID
16-19 channel Client channel (port) number
20-23 serverHint Server index (port)
24-27 bootID Sender’s boot timestamp
28-31 ID RPC sequence number
32-35 delay Inter-fragment delay
36-39 numFrags Number of fragments in this message
40-43 fragMask Bitmask identifying fragment
44-47 command RPC procedure identifier
48-51 paramSize Number of bytes in parameter area
52-55 paramOffset Offset of this fragment’s parameters
56-59 dataSize Number of bytes in data area
60-63 dataOffset Offset of this fragment’s dataiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table C-1. There are 16 4-byte integer fields in an RPC packet header. This is followed
by two variable length regions called the ‘‘parameter’’ and ‘‘data’’ areas. The whole
RPC packet is further encapsulated in a lower-level transport format, either raw Ethernet
or IP.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

RPC Type and Flag Bitsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Bit Value Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

RPC_TYPE 0xff00 Mask for type bits
RPC_REQUEST 0x0100 Request message
RPC_ACK 0x0200 Acknowledgment message
RPC_REPLY 0x0400 Reply message
RPC_ECHO 0x0800 Special low-level echo messageiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RPC_FLAG 0x00ff Mask for flag bits
RPC_PLSACK 0x0001 Please acknowledge REQUEST
RPC_LASTFRAG 0x0002 Last fragment in REQUEST/REPLY, or partial ACK.
RPC_CLOSE 0x0004 Close connection between client and server (ACK)
RPC_ERROR 0x0008 REPLY contains error code in command field
RPC_SERVER 0x0010 Message to server (REQUEST or ACK)
RPC_LAST_REC 0x0020 (Internal) Marks end of circular trace
RPC_NOT_ACTIVE 0x0040 Sender is not fully active (REQUEST/ACK/REPLY)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table C-2. The flags field in the RPC packet header contains these flag and type
bits. The types are mutually exclusive, while the flags can be found in the packets
of the indicated type.

format of the RPC protocol header. Note that all fields are 4 byte integers to facilitate
byte swapping between hosts of different architectures. All packets (request, replies, and
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acknowledments) sent by the RPC protocol have this same header. The parameter and/or
data area may be of zero length.

The flags field contains both packet type information (request, reply, ack) and some
flags (error reply, please acknowledge, close connection, to server, host not active). The
values for the flags are defined in Table C-2. The explaination of each flag indicates the
type of packet in which it occurs.

The remaining packet fields are described below.

version This field defines the RPC version number and it is also used to detect
byte ordering differences between the client and the server. The
currently defined version numbers are:

RPC_NATIVE_VERSION 0x0f0e0003
RPC_SWAPPED_VERSION0x03000e0f

If a receiver gets a packet with the byte-swapped version number it has
to byte-swap the RPC header and the parameter block. This can be
done by treating each field in the header as an integer, and by treating
the parameter block as an array of integers. The data block remains
uninterpreted by the low levels of the RPC system.

flags The flag bits are defined above in Table C-2.

clientID Sprite host ID of client host. Sprite host IDs are distinct from the low-
level host IDs used by the datagram protocol (i.e. ethernet or IP).

serverID Sprite host ID of server host.

channel The client channel number. Each Sprite hosts has a small number of
channels (8) which provide for concurrent communication.

serverHint A hint as to the server process port.

bootID Boot-time timestamp. Set to network time upon booting.

ID RPC sequence number. The same on all packets concerning a single
RPC.

delay Desired interfragment delay, in microseconds. This is used when send-
ing fragmented messages to slower hosts to introduce a time delay
between transmission of packet fragments.

numFrags Number of fragments in the message. 0 (zero) indicates no fragment-
ing. The maximum number of fragments supported in the implementa-
tion is currently 16, but this field allows up to 32 fragments.

fragMask Bitmask indicating which fragment of a REQUEST or REPLY this is.
If no fragmenting then this field has to be 0 (zero). In ACK packets this
mask indicates what fragments have been received.

command Command (procedure) identifier for REQUEST. For REPLY messages
with the ERROR bit set this field is overloaded with an error code.

paramSize The number of bytes in the first data area.
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paramOffset The offset of this piece of the parameters within the whole parameter
block.

dataSize The number of bytes in the second data area.

dataOffset The offset of this piece of the data within the whole data block.

3. Protocol Layering

The RPC protocol is designed to use any datagram protocol for transport between
hosts. The format of the datagram header is not important to the RPC protocol itself,
although the routing module in the Sprite kernel will examine the datagram header to
learn the correspondence between Sprite host IDs and the addresses used by the transport
protocol. When used with the Internet Datagram Protocol (IP), the RPC header, parame-
ters, and data would follow the IP header immediately. We have been assigned Internet
protocol number 90 for implementations layered on top of the IP protocol.

Bytes 0-31 IP header (with no options)
Bytes 32-95 RPC header
Bytes 96+ RPC parameters and data, if any

4. Source Code References

The RPC protocol implementation can be found in the Sprite kernel sources. The
directory is ‘‘/sprite/src/kernel/rpc’’. The definitions of the packet formats given here
come from the file ‘‘rpcPacket.h’’. Statistics that are collected by the on-line RPC sys-
tem are defined in ‘‘rpcCltStat.h’’ and ‘‘rpcSrvStat.h’’. These statistics are available via
the rawstat and rpcstat Sprite commands.
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APPENDIX D

The Sprite RPC Interface

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1. Introduction

This is a brief summary of the network interface to Sprite. This is done via a
description of each RPC used in the implementation. Most of the calls have to do with
the file system, although there are a few related to process migration, signals, and remote
waiting. The parameters of each RPC are specified, and a few words about the use of the
RPC are given. This is only a terse reference guide; there is not necessarily justification
or explaination included in the descriptions.

It is important to understand that this RPC interface is between two operating sys-
tem kernels. The terms ‘‘client’’ and ‘‘server’’ refer to instances of the kernel acting in
these roles. The term ‘‘application process’’ will be used when necessary to refer to the
process triggering the use of an RPC.

1.1. The RPC Protocol

It is useful to review the appendix on the RPC protocol itself. The main thing to
understand is that the information included in each RPC request and reply is broken into
three parts, a standard RPC header, a parameter area, and a data area. The actual size of
the parameter and data areas are extracted from the packet header and reported to the
stub procedures. The ID of the client is also reported to the server-side stub procedures.
The stubs have to deal with the distinct parameter and data areas. The parameter area is
restricted to contain only integers, while the data area can contain arbitrary data. The
low-levels of the RPC protocol handle communication between hosts of different byte
order by automatically byteswapping the RPC header and the parameter area when a
packet is recieved from a host with a different byte order. This means that both the client
and server stubs can treat the parameter area as a C structure (of integers), and not worry
about alignment problems. If the data area is used for other than file data or strings, then
the stub, or even a higher-level procedure, has to do its own byteswapping.

Lastly, there is a return code from each RPC, with SUCCESS (zero) meaning success-
ful completion. Sprite return codes are defined in the file ‘‘/sprite/lib/include/status.h’’.

The complete set of RPCs used in the Sprite implementation is given in Table D-1.
The number associated with the RPC is the procedure number used in the RPC packet
header. The RPCs are described in more detail below.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sprite Remote Procedure Callsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Procedure # Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ECHO_1 1 Echo. Performed by server’s interrupt handler (unused).
ECHO_2 2 Echo. Performed by Rpc_Server process.
SEND 3 Send. Like Echo, but data only transferred to server.
RECEIVE 4 Receive. Data only transferred back to client.
GETTIME 5 Broadcast RPC to get the current time.
FS_PREFIX 6 Broadcast RPC to find prefix server.
FS_OPEN 7 Open a file system object by name.
FS_READ 8 Read data from a file system object.
FS_WRITE 9 Write data to a file system object.
FS_CLOSE 10 Close an I/O stream to a file system object.
FS_UNLINK 11 Remove the name of an object.
FS_RENAME 12 Change the name of an object.
FS_MKDIR 13 Create a directory.
FS_RMDIR 14 Remove a directory.
FS_MKDEV 15 Make a special device file.
FS_LINK 16 Make a directory reference to an existing object.
FS_SYM_LINK 17 Make a symbolic link to an existing object.
FS_GET_ATTR 18 Get the attributes of the object behind an I/O stream.
FS_SET_ATTR 19 Set the attributes of the object behind an I/O stream.
FS_GET_ATTR_PATH 20 Get the attributes of a named object.
FS_SET_ATTR_PATH 21 Set the attributes of a named object.
FS_GET_IO_ATTR 22 Get the attributes kept by the I/O server.
FS_SET_IO_ATTR 23 Set the attributes kept by the I/O server.
FS_DEV_OPEN 24 Complete the open of a remote device or pseudo-device.
FS_SELECT 25 Query the status of a device or pseudo-device.
FS_IO_CONTROL 26 Perform an object-specific operation.
FS_CONSIST 27 Request that cache consistency action be performed.
FS_CONSIST_REPLY 28 Acknowledgement that consistency action completed.
FS_COPY_BLOCK 29 Copy a block of a swap file.
FS_MIGRATE 30 Tell I/O server that an I/O stream has migrated.
FS_RELEASE 31 Tell source of migration to release I/O stream.
FS_REOPEN 32 Recover the state about an I/O stream.
FS_RECOVERY 33 Signal that recovery actions have completed.
FS_DOMAIN_INFO 34 Return information about a file system domain.
PROC_MIG_COMMAND 35 Used to transfer process state during migration.
PROC_REMOTE_CALL 36 Used to forward system call to the home node.
PROC_REMOTE_WAIT 37 Used to synchonize exit of migrated process.
PROC_GETPCB 38 Return process table entry for migrated process.
REMOTE_WAKEUP 39 Wakeup a remote process.
SIG_SEND 40 Issue a signal to a remote process.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table D-1. The Remote Procedure Calls that are used in the Sprite implementation.
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1.2. Source Code References

The RPC parameters described below are given as C typedefs. These have been
extracted from the C source code of the Sprite implementation. It may help to consult
the code in order to fully understand the use of a particular RPC. Most of the RPC stubs
are organized so the client and server stub for a given RPC are together along with the
definition of their parameters. However, these definitions also include structures that are
common to the rest of the implementation and may be defined elsewhere. Table D-2 has
a list of the ‘‘.c’’ files that contain most of the RPC stubs and the ‘‘.h’’ files that contain
most of the relavent typedefs. Finally, note that these structures are passed around within
the kernel as well as between kernels using RPC, and there are some structure fields that
are not valid during an RPC.

2. ECHO_2 This echoes data off another host. This operation is handled by an
Rpc_Server process, so it exercises the full execution path involved in a regular RPC.
(The unsupported ECHO_1 was used to echo off the interrupt handler.) This is used for
benchmarking the RPC system, and it is also used by the recovery module to verify that
another host is up. Equal amounts of data are transferred in both directions. The data is
uninterpreted, and it is put in the data area of the RPC packet.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Important Source Filesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

fs/fs.h Basic FS definitions.
fs/fsNameOps.h Definitions for the naming interface.
fsrmt/fsNameOpsInt.h More definitions for the naming interface.
fsrmt/fsrmtInt.h Definitions for the I/O interface.
fsrmt/fsSpriteDomain.c RPC stubs for the naming interface.
fsrmt/fsSpriteIO.c RPC stubs for the I/O interface
fsrmt/fsRmtAttributes.c RPC stubs for attribute handling.
fsrmt/fsRmtDevice. RPC stubs for remote devices.
fsrmt/fsRmtMigrate.c RPC stubs for migraiton.
fsio/fsStream.c RPC stub for migration callback.
fsconsist/fsCacheConsist.c RPC stubs for cache consistency.
fsutil/fsRecovery.c RPC stubs for state recovery.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table D-2. Important source files concerning the RPC interface to Sprite. The file
names are relative to the ‘‘/sprite/src/kernel’’ directory. This list isn’t guaranteed to be
complete. There are likely to be other definition files needed to fully resolve the param-
eter definitions of an RPC. (All required definitions are given in this appendix.)
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3. SEND This transmints data to another host. This is just used for benchmarking the
RPC system. Data is only transferred one way, from the client to the server.

4. RECEIVE This receives data from another host. This is only used for benchmark-
ing the RPC system.

5. GETTIME This is a broadcast RPC used to get the time-of-day. This is used by
hosts during boot strap in order to set their clocks. The clock value is also used to set
their rpcBootID, which is included in the header of all subsequent RPC packets. This is
the first RPC done by a Sprite host, and the bootID in its RPC header is zero. The param-
eters and data areas of the RPC request are empty. The parameter area of the reply con-
tains the following structure:

typedef struct RpcTimeReturn {
Time time;
int timeZoneMinutes;
int timeZoneDST;

} RpcTimeReturn;

The Time data type is defined as:

typedef struct Time {
int seconds;
int microseconds;

} Time;

The time is the number of seconds since Jan 1, 1970 in universal (GMT) time. The
timeZoneMinutes is the offset of the local timezone from GMT. The timeZoneDST is a
flag indicating if daylight savings time is allowed in the timezone (not if it is in effect at
the current date).

6. FS_PREFIX This is a broadcast RPC used to locate the server for a prefix. The
request parameter area is empty. The request data area contains the null-terminated
prefix, whose length can be determined from the RPC packet header’s dataLength field.
The reply data area is empty. The reply parameter area contains the following structure:

typedef struct FsPrefixReplyParam {
FsrmtUnionData openData;
Fs_FileID fileID;

} FsPrefixReplyParam;

The fileID identfies the root directory of the domain identified by the prefix. The client
should cache the mapping from the prefix to the fileID. It specifies this fileID as the
prefixID in lookup RPCs (FS_OPEN, etc.). The openData is used by Sprite clients to set
up internal data structures associated with an open I/O stream. The FsrmtUnionData
typedef is described under FS_OPEN. The Fs_FileID is defined as follows:

typedef struct Fs_FileID {
int type;
int serverID;
int major;
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int minor;
} Fs_FileID;

The serverID is the Sprite hostID of the I/O server for the object. The major and minor
fields identify the object to the I/O server. The values for the type field are defined in
Table D-3. With the FS_PREFIX RPC the returned type is either FSIO_RMT_FILE_STREAM
for regular Sprite file systems, or FSIO_PFS_NAMING_STREAM for pseudo-file-systems.

7. FS_OPEN This is used to open a file system object in preparation for further I/O
operations. The parameters to an open RPC include a pathname, which may have several
components, and a file ID that indicates where the pathname starts. It also includes infor-
mation about how the object will be used, and identification of the user and the client
host that is doing the open. The reply to an open is one of two things. Ordinarily data is
returned that is used to set up data structures for an I/O stream to the object. Depending
on the type of object opened, which is specified in the reply, the reply contains different

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sprite Internal Stream Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0 FSIO_STREAM For top-level stream descriptor.
1 FSIO_LCL_FILE_STREAM Local file.
2 FSIO_RMT_FILE_STREAM Remote file.
3 FSIO_LCL_DEVICE_STREAM Local device.
4 FSIO_RMT_DEVICE_STREAM Remote device.
5 FSIO_LCL_PIPE_STREAM Anonymous pipe.
6 FSIO_RMT_PIPE_STREAM Remote anonymous pipe.
7 FSIO_CONTROL_STREAM Pseudo-device control stream.
8 FSIO_SERVER_STREAM Pseudo-device server stream.
9 FSIO_LCL_PSEUDO_STREAM Attached to a server stream.

10 FSIO_RMT_PSEUDO_STREAM Indirectly attached to a server stream.
11 FSIO_PFS_CONTROL_STREAM Records pseudo-file-system server.
12 FSIO_PFS_NAMING_STREAM Pseudo-file-system naming stream.
13 FSIO_LCL_PFS_STREAM Pseudo-file-system I/O stream.
14 FSIO_RMT_PFS_STREAM Remote Pseudo-file-system I/O stream.
15 FSIO_RMT_CONTROL_STREAM Fake type for GET_ATTR of a pseudo-device.
16 FSIO_PASSING_STREAM Fake type when passing open streams.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table D-3. The internal stream types used in the Sprite implementation. Most types
have corresponding local (LCL) and remote (RMT) types. The CONTROL and SERVER
streams, however, are always local because they are between the kernel and the pseudo-
device or pseudo-file-system server process. The PFS_NAMING stream is always remote.
It is returned in response to prefix broadcasts in the case of a pseudo-file-system. Some
additional types are defined for use with the kernel’s internal I/O interface, and these are
included here for completeness.
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data used for this purpose. However, it is also possible that the pathname leaves the
server’s domain, in which case a new pathname is returned to the client, and perhaps also
a new prefix. These details are described in more detail below.

7.1. FS_OPEN Request Format The request data area contains a null terminated path
name. The request parameter area contains the following structure:

typedef struct Fs_OpenArgs {
Fs_FileID prefixID;
Fs_FileID rootID;
int useFlags;
int permissions;
int type;
int clientID;
int migClientID;
Fs_UserIDs id;

} Fs_OpenArgs;

The prefixID specifies where the pathname begins. There are two cases for this. If the
client initially has an absolute pathname, then it can match this against its prefix cache
and use the fileID associated with the longest matching prefix. The prefix should be
stripped off before sending the pathname to the server. If the client initially has a relative
pathname, then the prefixID is the fileID associated with the current working directory.
This is obtained by a previous FS_OPEN RPC on the current directory. The rootID is a
prefix ID, and it is used to trap out pathnames that ascend out the root directory of a
domain. It is either the same as the prefixID, or it is the ID of the prefix that identifies the
domain of the current directory. Note that this supports implementation of chroot(), and
it also allows servers to export prefixes that don’t correspond to the ‘‘natural’’ root direc-
tory of a domain.

The permissions field contains the permission bits to set on newly created files.
These are defined in Table D-4.

The type field contrains the type of object that can be opened. If the type is FS_FILE,
then any type can be opened. This is the way the FS_OPEN RPC is used by the open()
system call. However, FS_OPEN is also used in the implementation of readlink(), sym-
link(), and mknod(). For these calls specific types are indicated so that the type of the
named file must match. (Warning, note the bug report concerning FS_REMOTE_LINK and
FS_SYMBOLIC_LINK in the last section of this appendix.) The types are defined in Table
D-5, and they correspond to types in the file descriptors kept on disk.

The clientID is the hostID of the process doing the open. The migClientID is the
home node of a migrated process, which may be different than the clientID if a process
has migrated. This is used when opening devices so that a migrated process can open
devices on its home node. This only applies to device files with the FS_LOCALHOST_ID
serverID attribute. Device files with a specific host ID (>0) for their serverID attribute
always specify the device on that host. (See FS_MAKE_DEV below.)
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iiiiiiiiiiiiiiiiiiiiiiiii
Permission Bitsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

FS_OWNER_READ 00400
FS_OWNER_WRITE 00200
FS_OWNER_EXEC 00100
FS_GROUP_READ 00040
FS_GROUP_WRITE 00020
FS_GROUP_EXEC 00010
FS_WORLD_READ 00004
FS_WORLD_WRITE 00002
FS_WORLD_EXEC 00001
FS_SET_UID 04000
FS_SET_GID 02000iiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table D-4. Permission bits for the Fs_OpenArgs structure. These are octal values

iiiiiiiiiiiiiiiiiiiiiiii
File Descriptor Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

FS_FILE 0
FS_DIRECTORY 1
FS_SYMBOLIC_LINK 2
FS_REMOTE_LINK 3
FS_DEVICE 4
(not used) 5
FS_LOCAL_PIPE 6
FS_NAMED_PIPE 7
FS_PSEUDO_DEV 8
(not used) 9
(reserved for testing) 10iiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table D-5. Types for disk-resident file descriptors. Also used for the type field in the
Fs_OpenArgs structure.

The id field contains the user and group IDs of the process doing the open. The
Fs_UserIDs typedef is defined as follows:

#define FS_NUM_GROUPS 8

typedef struct Fs_UserIDs {
int user;
int numGroupIDs;
int group[FS_NUM_GROUPS];

} Fs_UserIDs;

The useFlags indicate how the object is going to be used. Valid useFlag bits are
defined in Table D-6. They are divided into two sets, those passed into the Fs_Open
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Usage Flagsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Value Name Description
0xfff FS_USER_FLAGS A mask used to prevent user pro-

grams from setting kernel bits.
0x001 FS_READ Open the object for reading.
0x002 FS_WRITE Open the object for writing.
0x004 FS_EXECUTE Open the object for execution, if it is

a regular file, or for changing the
current directory if it is a directory.

0x008 FS_APPEND Open the object for append mode
writing.

0x020 FS_PDEV_MASTER Open a pseudo-device as the server
process.

0x080 FS_PFS_MASTER Open a remote link as the server for
a pseudo-file-system.

0x200 FS_CREATE Create a directory entry for the ob-
ject if it isn’t there already.

0x400 FS_TRUNC Truncate the object after opening.
0x800 FS_EXCLUSIVE If specified with FS_CREATE, then the

open will fail if the object already
exists.

0xfffff000 FS_KERNEL_FLAGS Bits are set in this field by the client
kernel.

0x00001000 FS_FOLLOW Follow symbolic links when travers-
ing the pathname.

0x00004000 FS_SWAP The file is being used as a VM back-
ing file.

0x00010000 FS_OWNERSHIP Set when changing ownership or per-
mission bits. The server should veri-
fy that the opening process owns the
file.

0x00020000 FS_DELETE Set when deleting a file. (FS_UNLINK
RPC, not FS_OPEN.)

0x00040000 FS_LINK Set when creating a hard link.
(FS_LINK RPC, not FS_OPEN.)

0x00080000 FS_RENAME Set during rename. (FS_RENAME
RPC, not FS_OPEN.)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table D-6. Values for the useflags field of Fs_OpenArgs and Fs_LookupArgs.

system call from user programs, and those set by the Sprite kernel for its own use. (For
historical reasons the UNIX open() call is mapped to Fs_Open, and some of the flag bits
differ from the UNIX O_* flags, mainly the READ and WRITE bits.)
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7.2. FS_OPEN Reply Format The data area of an FS_OPEN reply may contain a
returned pathname, in the case where the input pathname leaves the server’s domain.
This is indicated by the FS_LOOKUP_REDIRECT return code. If the returned name begins
with a ’/’ character then it has been expanded by the server and can be matched against
the client’s prefix table. If the prefixLength parameter (defined below) is non-zero then
the initial part of the expanded pathname is a domain prefix that should be added to the
client’s prefix table. The client should use the FS_PREFIX RPC to locate the domain’s
server. If the returned pathname begins with ‘‘../’’, then the client has to combine the
returned pathname with the prefix it used for the server’s domain as follows. (This
means a client implementation has to remember the domain prefix associated with a
current working directory.) If the prefix is ‘‘/a/b’’ and the returned pathname is ‘‘../x/y’’,
then these are combined into ‘‘/a/b/../x/y’’, which further reduces to ‘‘/a/x/y’’. Note this
no longer matches on the ‘‘/a/b’’ prefix.

The parameter area of the FS_OPEN reply contains data used to initialize the I/O
stream data structures. The format of the rely parameters is defined as follows:

typedef struct FsrmtOpenResultsParam {
int prefixLength;
Fs_OpenResults openResults;
FsrmtUnionData openData;

} FsrmtOpenResultsParam;

typedef struct Fs_OpenResults {
Fs_FileID ioFileID;
Fs_FileID streamID;
Fs_FileID nameID;
int dataSize;
ClientData streamData;

} Fs_OpenResults;

typedef union FsrmtUnionData {
Fsio_FileState fileState;
Fsio_DeviceState devState;
Fspdev_State pdevState;

} FsrmtUnionData;

The Fs_OpenResults contain three object identifiers, one for the object that was
opened, one for the I/O stream to that object (the streamID is type FSIO_STREAM), and
one for the file that names the object (the nameID is type FSIO_RMT_FILE_STREAM). For
devices and pseudo-devices the file that represents the name is different than the object
itself, and the nameID is used when getting the attributes of an object. The I/O stream
also has an identfier because I/O streams are passed between machines during process
migration. The rest of the data is type-specific and is described below.

typedef struct Fsio_FileState {
int cacheable;
int version;
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int openTimeStamp;
Fscache_Attributes attr;
int newUseFlags;

} Fsio_FileState;

typedef struct Fscache_Attributes {
int firstByte;
int lastByte;
int accessTime
int modifyTime;
int createTime;
int userType;
int permissions;
int uid;
int gid;

} Fscache_Attributes;

The Fsio_FileState is returned when a regular file or directory is opened. In this
case the type in the ioFileID is FSIO_RMT_FILE_STREAM. The cacheable flag indicates if
the client can cache the file. The version number is used to detect stale data in the
client’s cache. The openTimeStamp should be kept and used later when handling
FS_CONSIST RPCs. (The openTimeStamp is redundant with respect to the version
number, and it may be eliminated in the future.) The Fscache_Attributes are a sub-set of
the file attributes stored at the file server. The lastByte, modifyTime and accessTime are
updated by the client if it caches the file. These attributes are pushed back to the server
at close time. (firstByte is unused. It is a vestage of a named pipe implementation.) The
permission bits and ownership IDs are used with setuid and setgid programs. The
newUseFlags are a modified version of the useFlags passed in the FS_OPEN request. The
client stores these in its I/O stream descriptor and does consistnecy checking on subse-
quent I/O operations by the user-level application.

typedef struct Fsio_DeviceState {
int accessTime;
int modifyTime;
Fs_FileID streamID;

} Fsio_DeviceState;

The Fsio_DeviceState is returned from the file server when a device is opened. The
type in the ioFileID is either FSIO_LCL_DEVICE_STREAM or FSIO_RMT_DEVICE_STREAM.
In the latter case, the client will pass the Fsio_DeviceState to the I/O server in a
FS_DEV_OPEN RPC. The accessTime and modifyTime are maintained at the I/O server.
(Currently they are never pushed back to the file server. This is bug.) The streamID is
the same as in the Fs_OpenResults, but it is included in Fsio_DeviceState so it can be
passed to the I/O server.

typedef struct Fspdev_State {
Fs_FileID ctrlFileID;
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Proc_PID procID;
int uid;
Fs_FileID streamID;

} Fspdev_State;

The Fspdev_State is returned when a pseudo-device is opened. The type in the
ioFileID is FSIO_CONTROL_STREAM when the server process opens the pseudo-device. In
this case the Fspdev_State structure is not returned.

When any other process opens the pseudo-device then the type in the ioFileID is
either FSIO_LCL_PSEUDO_STREAM or FSIO_RMT_PSEUDO_STREAM. In the latter case the
client passes the Fspdev_State to the I/O server with a FS_DEV_OPEN RPC. The
ctrlFileID identfies the control stream of the server process. The procID and uid should
be filled in by the client before the FS_DEV_OPEN RPC. The streamID is the same as that
in the Fs_OpenResults, but it is included in Fspdev_State so it can be passed to the I/O
server. The I/O server sets up a shadow stream descriptor that matches the client’s.

When a process opens a file in a pseudo-file-system then the type in the ioFileID is
FSIO_RMT_PFS_STREAM. (If the pseudo-file-system server is on the same host as the pro-
cess doing the open, the the FS_OPEN RPC is not used, so the FSIO_LCL_PFS_STREAM is
not seen here.)

8. FS_READ This call is used to read data from a file system object. The data area of
the request message is empty. The parameter area of the request contains the following
structure.

typedef struct FsrmtIOParam {
Fs_FileID fileID;
Fs_FileID streamID;
Sync_RemoteWaiter waiter;
Fs_IOParam io;

} FsrmtIOParam;

typedef struct {
List_Links links;
int hostID;
Proc_PID pid;
int waitToken;

} Sync_RemoteWaiter;

typedef struct Fs_IOParam {
Address buffer;
int length;
int offset;
int flags;
Proc_PID procID;
Proc_PID familyID;
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int uid;
int reserved;

} Fs_IOParam;

The fileID and the streamID together specify the I/O stream and the object it references.
These have been returned from a previous FS_OPEN RPC. The Sync_RemoteWaiter stuc-
ture contains information about the process in case the read operation would block, in
which case it is used in a subsequent REMOTE_WAKEUP RPC. (The links field of this is
not valid during the RPC.) The length in the Fs_IOParam indicates how much data is to
be read, and the offset indicates the byte offset at which to start the read. (The buffer
field is not valid during the RPC.) The flags are the flags from the I/O stream descriptor,
which are derived from the useFlags in FS_OPEN. The procID, familyID, and uid are used
for ownership checking by certain devices. The reserved field is currently unused, but
may eventually be used for a file’s version number.

The reply message for a read contains the data in the data area, and a Fs_IOReply in
the parameter area.

typedef struct Fs_IOReply {
int length;
int flags;
int signal;
int code;

} Fs_IOReply;

The length indicates the number of bytes returned. The flags indicate the select state of
the object. They are an or’d combination of the FS_READ, FS_WRITE, and FS_EXECUTE
bits defined above. The signal and code are used to return a signal from certain kinds of
devices. If non-zero, the signal field will result in that signal being sent to the application
process, along with the code that modifies the signal.

If the return code of the FS_READ RPC is FS_WOULD_BLOCK, then length may be
greater than or equal to zero. This indicates that less than the requested amount of data
was returned, and that the I/O server has saved the Sync_RemoteWaiter information. A
REMOTE_WAKEUP RPC will be generated by the I/O server when the object becomes
readable.

9. FS_WRITE This is similar to the FS_READ RPC, except that the request data area
contains the data to be transfered. The request parameters are the same as for FS_READ.
The reply parameters are also the same. If the I/O server doesn’t accept all the data
transferred to it then the client will block the application process if FS_WOULD_BLOCK is
returned. Otherwise a short write and a SUCCESS error code will prompt an immediate
retry of the rest of the data.

There are some additional flags in the Fs_IOParam structure that pertain to writes.
These are described below.

0x00100000 FS_CLIENT_CACHE_WRITE
When a client writes back data from its cache this flag is set. In this case the file



164

server does not reset the modify time because the client maintains the modify time
while caching the file.

0x02000000 FS_LAST_DIRTY_BLOCK
This is set when a client is writing back its last block for a particular file. At the
receipt of the last block a server in write-back-ASAP mode will schedule the file to
be written to disk, although the RPC will return before the file actually gets to disk.

0x10000000 FS_WB_ON_LDB
This tells the server to write through the file if it is the last dirty block. This will
appear with FS_LAST_DIRTY_BLOCK. At the receipt of a block marked with
this flag the server will block until the file is written through, and the RPC will
return after the file is on disk.

10. FS_CLOSE When the last process using an I/O stream closes its reference, then an
FS_CLOSE RPC is made to the I/O server. The request data area is empty. The request
parameter area is described below. The reply message has no data or parameters, only a
return code.

typedef struct FsRemoteCloseParams {
Fs_FileID fileID;
Fs_FileID streamID;
Proc_PID procID;
int flags;
FsCloseData closeData;
int closeDataSize;

} FsRemoteCloseParams;

typedef union FsCloseData {
Fscache_Attributes attrs;

} FsCloseData;

The fileID is the ioFileID from the FS_OPEN RPC. The streamID is also from the
FS_OPEN RPC. The procID identfies the process doing the close. The flags are the flags
from the stream descriptor, and they may also include the FS_LAST_DIRTY_BLOCK and
FS_WB_ON_LDB flags if a file is in write-back-on-close mode. The closeData is a type-
specific union used to propagate attributes back to the file server at close time. Currently
this is only implemented for regular files, in which case the closeData the
Fscache_Attributes already described. (It should also be implemented for devices, but
the file server is not contacted at close time for devices.) The closeDataSize is the
number of valid bytes in the closeData union.

11. FS_UNLINK This RPC is used to remove a directory entry for an object. When
the last directory entry that references an object is removed, the underlying object is
deleted. However, if the object is still referneced by an open I/O stream then the deletion
is postponed until the I/O stream is closed. The request data area contains a null ter-
minated pathname. The request parameter area contains an Fs_LookupArgs record,
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which is a sub-set of the Fs_OpenArgs record previously defined.

typedef struct Fs_LookupArgs {
Fs_FileID prefixID;
Fs_FileID rootID;
int useFlags;
Fs_UserIDs id;
int clientID;
int migClientID;

} Fs_LookupArgs;

The reply to an RPC_UNLINK is ordinarily only a return code. However, as with all opera-
tions on pathnames, the server may return a new pathname if the input pathname leaves
its domain. In this case the return code is FS_LOOKUP_REDIRECT, and the return data area
contains the new pathname (see NB below), and the return parameter area contains an
integer indicating the length of the prefix embedded in the returned pathname, or zero.
NB: For implementation reasons, the return data area also contains room for the prefix
length (4 bytes) in front of the returned pathname. See FS_OPEN for a fuller explaination
of FS_LOOKUP_REDIRECT.

12. FS_RENAME This is an operation on two pathnames, and it is used to change the
name of an object in the file system. The request parameters include the Fs_LookupArgs
previously defined, plus another fileID for the prefix of the second pathname. The data
area contains two pathnames, and currently this is defined as two maximum length char-
acter arrays.

typedef struct Fs_2PathParams {
Fs_LookupArgs lookup;
Fs_FileID prefixID2;

} Fs_2PathParams;

#define FS_MAX_PATH_NAME_LENGTH 1024

typedef struct Fs_2PathData {
char path1[FS_MAX_PATH_NAME_LENGTH];
char path2[FS_MAX_PATH_NAME_LENGTH];

} Fs_2PathData;

There can also be a pathname redirection during a FS_RENAME, in which case the return
code is FS_LOOKUP_REDIRECT, and the return data area has the returned pathname.
Again, for implementation reasons two fields in the parameter area (Fs_2PathReply) are
repeated in the data area before the returned pathname (Fs_2PathRedirectInfo). The
name1ErrorP flag that is returned indicates whether the error code applies to the first
name (if name1ErrorP is non-zero), or to the second pathname. (Please excuse the fact
that prefixLength and name1ErrorP occur in opposite orders! ugh. The
Fs_2PathRedirectInfo is passed around the kernel internally, and these two fields are
copied into the parameter area so they get byteswapped correctly.)

typedef struct Fs_2PathReply {
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int prefixLength;
Boolean name1ErrorP;

} Fs_2PathReply;

typedef struct Fs_2PathRedirectInfo {
int name1ErrorP;
int prefixLength;
char fileName[FS_MAX_PATH_NAME_LENGTH];

} Fs_2PathRedirectInfo;

Note that redirection makes lookups involving two pathnames slightly more complicated
than an operation on a single pathname. A Sprite client will use its prefix cache to get
the prefixFileID for both pathnames, and they may specify different servers. The client
always directs the FS_RENAME (or FS_LINK) to the server for the first pathname. If the
second pathname is also in the same domain then the FS_RENAME (or FS_LINK) can com-
plete with a single RPC. If the first pathname leaves the server’s domain, the server
returns FS_WOULD_BLOCK and sets name1ErrorP to a non-zero value. If the second path-
name begins in the server’s domain but subsequently leaves it, the server returns
FS_WOULD_BLOCK and sets name1ErrorP to zero. If the second pathname doesn’t begin
in the server’s domain, it returns FS_CROSS_DOMAIN_OPERATION. At this point the client
does a FS_GET_ATTR on the parent of the second pathname to make sure that further
redirections do not lead the second pathname back to the server’s domain. The name of
the parent is easily computed by trimming off the last component of the second path-
name. If the FS_GET_ATTR gets a redirect the client reiterates, otherwise the FS_RENAME
(or FS_LINK) fails.

13. FS_MKDIR This is used to create a directory. The request data is a null ter-
minated pathname. The request parameters are the Fs_OpenArgs described above for
FS_OPEN, with the type equal to FS_DIRECTORY. If the return code is
FS_LOOKUP_REDIRECT, then the reply data is a new pathname (again preceeded by 4
bytes of junk), and the reply parameters is the length of the embedded prefix.

14. FS_RMDIR This is used to remove a directory. The request data is a null ter-
minated pathname. The request parameters are the Fs_LookupArgs described above for
FS_UNLINK. If the return code is FS_LOOKUP_REDIRECT, then the reply data is a new
pathname (again preceeded by 4 bytes of junk), and the reply parameters is the length of
the embedded prefix.

15. FS_MKDEV This is used to create a device file. The request data is a null ter-
minated pathname. The request parameters, Fs_MakeDeviceArgs, are defined below. If
the return code is FS_LOOKUP_REDIRECT, then the reply data is a new pathname (again
preceeded by 4 bytes of junk), and the reply parameters is the length of the embedded
prefix.
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typedef struct Fs_MakeDeviceArgs {
Fs_OpenArgs open;
Fs_Device device;

} Fs_MakeDeviceArgs;

typedef struct Fs_Device {
int serverID;
int type;
int unit;
ClientData data;

} Fs_Device;

The Fs_MakeDeviceArgs are a slight super-set of the Fs_OpenArgs. They additionally
contain a Fs_Device structure that defines the server, type, and unit of the peripheral dev-
ice. (The data field is not used in the RPC.) The serverID is a Sprite Host ID. If the spe-
cial value FS_LOCALHOST_ID is used, then this device file always specifies the device
attached to the local host. Otherwise, it specifies a devices at a particular host.

#define FS_LOCALHOST_ID -1

Some of the device types are defined in Table D-7, although this list is not guaranteed to
be complete. These types are defined in <kernel/dev/devTypes.h>. The unit number is
device specific, and no attempt is made to specify them here. (For example, the ethernet
device encodes the protocol number in the unit. The SCSI devices encode the controller
number, target ID, and LUN.)

iiiiiiiiiiiiiiiiiiiiiiiii
Device Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEV_TERM 0
DEV_SYSLOG 1
DEV_SCSI_WORM 2
DEV_PLACEHOLDER_2 3
DEV_SCSI_DISK 4
DEV_SCSI_TAPE 5
DEV_MEMORY 6
DEV_XYLOGICS 7
DEV_NET 8
DEV_SCSI_HBA 9
DEV_RAID 10
DEV_DEBUG 11
DEV_MOUSE 12iiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table D-7. Definitions for device types.
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16. FS_LINK This creates another directory entry to an existing object. The two
objects are restricted to be within the same file system domain. The request and reply
messages have the same format as FS_RENAME. This is an operation on two pathnames,
and the comments regarding pathname redirection from FS_RENAME apply.

17. FS_SYM_LINK This is defined but not yet supported. Instead, symbolic links and
remote links are created by creating a file using FS_OPEN and type FS_SYMBOLIC_LINK or
FS_REMOTE_LINK, and then writing the value of the link with FS_WRITE. This should
change because it interacts poorly with systems that have a different format for their
remote links. (For example, for no good reason Sprite includes a null character in its
implementation of symbolic links, while UNIX does not. NFS access to Sprite are con-
fused by this, and it is possible to create bad symbolic links on an NFS server via the
Sprite NFS pseudo-file-system.)

18. FS_GET_ATTR This is used to get the attributes of the object behind an open I/O
stream. The parameter area of the request contain a Fs_FileID, which has been defined
above. This is the same as the ioFileID returned from an FS_OPEN. The request and
reply data areas are empty. The reply parameter area contains a Fs_Attributes structure
defined below.

typedef struct Fs_Attributes {
int serverID;
int domain;
int fileNumber;
int type;
int size;
int numLinks;
unsigned int permissions;
int uid;
int gid;
int devServerID;
int devType;
int devUnit;
Time createTime;
Time accessTime;
Time descModifyTime;
Time dataModifyTime;
int blocks;
int blockSize;
int version;
int userType;
int pad[4];

} Fs_Attributes;
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19. FS_SET_ATTR This is used to set the attributes of an object behind an I/O stream.
The request parameters contain the FsRemoteSetAttrParams structure, which is defined
below. The request data area, reply data area, and reply parameter area are all empty.

typedef struct FsRemoteSetAttrParams {
Fs_FileID fileID;
Fs_UserIDs ids;
Fs_Attributes attrs;
int flags;

} FsRemoteSetAttrParams;

The fileID identfies the object, and was returned as the ioFileID from the FS_OPEN RPC.
The Fs_UserIDs structure is needed to verify that the attributes can be changed, and this
has been defined above with FS_OPEN. The flags field indicates which attributes are to be
set. These flags are described in Table D-8.

20. FS_GET_ATTR_PATH This is used to get the attributes of a file system object
from the file server. This is an operation on a pathname, so the request data area contains
a null terminated pathname. The request parameters are the Fs_OpenArgs previously
described. The reply parameters are a Fs_GetAttrResultsParam structure, which is
defined below. If the return code is FS_LOOKUP_REDIRECT, then the reply data area

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Set Attribute Flagsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Value Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0x1F FS_SET_ALL_ATTRS Set all the attributes possible. See

the following definitions.
0x01 FS_SET_TIMES Set the access and modify times.

Used to implement UNIX utimes().
0x02 FS_SET_MODE Set the permissions. Used to imple-

ment UNIX chmod().
0x04 FS_SET_OWNER Set the owner and group. If either of

the gid and uid fields in the
Fs_Attributes structure are -1, then
they are not changed.

0x08 FS_SET_FILE_TYPE Set the user-defined file type. The
user-defined types currently in use
are defined in the next table.

0x10 FS_SET_DEVICE Set the device attributes. Used to
implement Fs_MakeDevice (UNIX
mknod()).iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table D-8. Values for the flags field in FsRemoteSetAttrParams.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
User-defined File Typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

FS_USER_TYPE_UNDEFINED 0 Not used.
FS_USER_TYPE_TMP 1 Temporary file.
FS_USER_TYPE_SWAP 2 VM swap file.
FS_USER_TYPE_OBJECT 3 Program object file.
FS_USER_TYPE_BINARY 4 Complete program image.
FS_USER_TYPE_OTHER 5 Everything else.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table D-9. Values for the user-defined file type attribute.

contains a returned pathname. NB: in this case there is no 4 bytes of padding in the data
area! (Sorry for this ugly inconsistency.)

typedef union Fs_GetAttrResultsParam {
int prefixLength;
struct AttrResults {
Fs_FileID fileID;
Fs_Attributes attrs;
} attrResults;

} Fs_GetAttrResultsParam;

The prefixLength is returned with the FS_LOOKUP_REDIRECT status. Otherwise, the
fileID is the same as the ioFileID returned from an FS_OPEN, and this is used to do a
FS_GET_IO_ATTR RPC with the I/O server. The Fs_Attributes structure has been defined
above.

21. FS_SET_ATTR_PATH This is used to set the attributes of a named file system
object. The request data area contains a null terminated pathname. The request parame-
ters are defined below. The reply data area contains a new pathname if the return code is
FS_LOOKUP_REDIRECT. (No padding bytes.) The reply data area contains a
Fs_GetAttrResultsParam structure which has been defined above. If
FS_LOOKUP_REDIRECT is returned then only the prefixLength is defined in the
Fs_GetAttrResultsParam.

typedef struct Fs_SetAttrArgs {
Fs_OpenArgs openArgs;
Fs_Attributes attr;
int flags;

} Fs_SetAttrArgs;

Each of these fields have been described above. The flags define which attributes to set.
See FS_SET_ATTR for a description.
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22. FS_GET_IO_ATTR This is used to get the attributes that are maintained by the
I/O server, typically the access and modify times. The general approach to getting attri-
butes is to first contact the file server (with either FS_GET_ATTR or FS_GET_ATTR_PATH)
to get the initial version of the attributes, and then use this RPC to get the most up-to-date
access and modify times. This is only applicable to remote devices and remote pseudo-
devices.

The request parameter area contains a Fs_GetAttrResultsParam that has been initial-
ized by a FS_GET_ATTR or FS_GET_ATTR_PATH RPC. The reply parameter area contains
a Fs_Attributes structure. The request and reply data areas are empty.

23. FS_SET_IO_ATTR This is used to update the attributes that are maintained by the
I/O server, typically the access and modify times. Setting attributes is structured the
same as with getting them, so the file server is contacted first (with FS_SET_ATTR or
FS_SET_ATTR_PATH). The complete attributes are returned from these calls, and then
used as the request parameters in this RPC.

The request message contains a FsRemoteSetAttrParams structure, which is defined
below. The request data area, the reply parameter area, and the reply data area are
empty.

typedef struct FsRemoteSetAttrParams {
Fs_FileID fileID;
Fs_UserIDs ids;
Fs_Attributes attrs;
int flags;

} FsRemoteSetAttrParams;

The fileID identifies the object, and is the same as the ioFileID returned from an FS_OPEN
RPC. The Fs_UserIDs and Fs_Attributes have been described above. The flags indicate
what attributes to set, and these are indicated above as well.

24. FS_DEV_OPEN This is used to complete an Fs_Open (UNIX open()) of a remote
device or remote pseudo-device. This is done after an FS_OPEN RPC has returned an
ioFileID with a type of FSIO_RMT_DEVICE_STREAM or FSIO_RMT_PDEV_STREAM. The
request parameter area contains a FsDeviceRemoteOpenParam structure, which is
defined below. The reply parameter area contains a new ioFileID so the I/O server can
modify this if it wants to. The request and reply data areas are empty.

typedef struct FsDeviceRemoteOpenParam {
Fs_FileID fileID;
int useFlags;
int dataSize;
FsrmtUnionData openData;

} FsDeviceRemoteOpenParam;

The fileID is the ioFileID returned from FS_OPEN. The useFlags are the newUseFlags
returned from FS_OPEN. The dataSize indicates the number of valid bytes in openData.
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The FsrmtUnionData has been described previously.

25. FS_SELECT This RPC is used to poll a remote I/O server to determine if an object
is ready for I/O. The input parameters include a fileID that identifies the object, three
fields that correspond to the read, write, and execute state of the object, and process
information used for remote waiting. If a field is non-zero it means an application is
querying that state. The return parameters contains copies of these fields, and the I/O
server should clear a field to zero if that state is not applicable. In this case, the I/O
server should save the Sync_RemoteWaiter information so it can notify the waiting pro-
cess when the objects state changes.

typedef struct FsRemoteSelectParams {
Fs_FileID fileID;
int read;
int write;
int except;
Sync_RemoteWaiter waiter;

} FsRemoteSelectParams;

typedef struct FsRemoteSelectResults {
int read;
int write;
int except;

} FsRemoteSelectResults;

NB: The read, write, and except fields are defined to be zero or non-zero, and the fields in
the result should be exact copies of the request fields, or they should be reset to zero. (If
non-zero they happen to be the bit that corresponds to the bit in the select mask. It is
only appropriate to copy the bit or clear it. Don’t blindly set the reply fields to 1.)

26. FS_IO_CONTROL This is used to do an object-specific operation. A number of
generic I/O controls are defined below, and the implementation of different objects are
free to define more I/O controls. The request parameter area contains a FsrmtIOCParam
structure, which is defined below. The reply parameter area contains a Fs_IOReply
structure that defines the amount of data returned, and a signal to generate, if any. The
request and reply data areas contain data blocks that are uninterpreted by generic kernel
code. In particular, they cannot be byteswapped except by the implementation of the I/O
control handler. The parameters include a byteOrder field so the handler can detect a
mismatch. In this case it should byteswap in the request data block so it can properly
interpret it, and also byteswap the reply datablock so the application process on the
remote client can properly interpret it.

typedef struct FsrmtIOCParam {
Fs_FileID fileID;
Fs_FileID streamID;
Proc_PID procID;
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Proc_PID familyID;
int command;
int inBufSize;
int outBufSize;
Fmt_Format format;
int uid;

} FsrmtIOCParam;

The fileID and streamID have been returned by FS_OPEN. The procID and familyID
identify the process and its process group. The sizes indicate how much data is being
sent to the I/O server and the maximum amount that can be accepted in return. The for-
mat defines a byte ordering, and it is used in conjunction with the Format library package
to do byteswapping. The uid specifies the user ID of the application process. The com-
mand is the I/O control operation, and the generic ones are defined below.

1 IOC_REPOSITION
Reposition the current access position of the I/O stream. The input data block con-
tains the following structure to define the new access position.

#define IOC_BASE_ZERO 0
#define IOC_BASE_CURRENT 1
#define IOC_BASE_EOF 2

typedef struct Ioc_RepositionArgs {
int base;
int offset;

} Ioc_RepositionArgs;

2 IOC_GET_FLAGS
Return the flag bits associated with an I/O stream. The reply data block contains an
integer with the flag bits. The following bits are defined for all objects, although
other objects may define more flags.

#define IOC_GENERIC_FLAGS 0xFF
#defineIOC_APPEND 0x01
#define IOC_NON_BLOCKING 0x02
#define IOC_ASYNCHRONOUS0x04
#define IOC_CLOSE_ON_EXEC0x08

3 IOC_SET_FLAGS
Set the flags on an I/O stream. The request data block contains an integer which is
to be new version of the flag word. It completely replaces the old flag word.

4 IOC_SET_BITS
Set individual bits in the flags word of an I/O stream. The request data block con-
tains an integer with the desired bits set.

5 IOC_CLEAR_BITS
Clear individual bits in the flags word of an I/O stream. The request data block con-
tains an integer with the desired bits set.
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6 IOC_TRUNCATE
Truncate an object to a specified length. The input data block contains an integer
which is the desired length.

7 IOC_LOCK
Place an advisory lock on an object. Used to implement UNIX flock(). The request
data block contains the following structure. If the lock cannot be obtained then
FS_WOULD_BLOCK should be returned and the process information should be saved
at the I/O server for a subsequent REMOTE_WAKEUP RPC back to the client.

typedef struct Ioc_LockArgs {
int flags;
int hostID;
Proc_PID pid;
int token;

} Ioc_LockArgs;

#define IOC_LOCK_SHARED 0x1
#define IOC_LOCK_EXCLUSIVE 0x2
#define IOC_LOCK_NO_BLOCK 0x8

The flag bits are defined above, and specify if the lock should be exclusive, in which
case it is blocked by either an existing exclusive lock or by a shared lock, or
whether it is a shared lock, in which case it can co-exist with other shared locks but
not an exclusive lock. If IOC_LOCK_NO_BLOCK is set then the application process
will not be blocked by the client in the case of FS_WOULD_BLOCK, so the I/O server
doesn’t have to remember the process information.

8 IOC_UNLOCK
Remove an advisory lock on an object. The complement of IOC_LOCK.

9 IOC_NUM_READABLE
Returns the number of bytes available on an I/O stream. The input data block con-
tains the current offset of the stream. The return data block contains the number of
bytes available on the stream.

10 IOC_GET_OWNER
Returns the owner of an I/O stream, which is either a process or a process group.
The return data block contains the following structure, along with definitions for the
procOrFamily field.

#define IOC_OWNER_FAMILY 0x1
#define IOC_OWNER_PROC 0x2

typedef struct Ioc_Owner {
Proc_PID id;
int procOrFamily;

} Ioc_Owner;

11 IOC_SET_OWNER
This defines the owner of an I/O stream. The request data block contains the
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Ioc_Owner structure.

12 IOC_MAP
Obsolete, superceeded by IOC_MMAP_INFO.

13 IOC_PREFIX
This returns the prefix under which a stream was opened. This is used to implement
the getwd() library call. The reply data block contains the prefix, which is null ter-
minated.

14 IOC_WRITE_BACK
This is used to write-back a range of bytes of a file to the server’s disk. The cache
will align the write-back on block boundaries that include the specified range of
bytes. The request data area contains the following structure.

typedef struct Ioc_WriteBackArgs {
int firstByte;
int lastByte;
Boolean shouldBlock;

} Ioc_WriteBackArgs;

15 IOC_MMAP_INFO
Tell the I/O server that a client is mapping a stream into memory. The request data
area contains the following structure. The isMapped field is 0 if the client is
unmapping the stream, and 1 if it is mapping the stream.

typedef struct Ioc_MmapInfoArgs {
int isMapped;
int clientID;

} Ioc_MmapInfoArgs;

((1<<16)-1) IOC_GENERIC_LIMIT
The Sprite kernel reserves the numbers below this for generic I/O control com-
mands. Other device drivers and pseudo-device servers define their own I/O con-
trols. Look at the README file ‘‘/sprite/src/include/dev/README’’ for details.

27. FS_CONSIST This is issued by a file server as a side effect of an FS_OPEN RPC. It
is a command to a client (not the one doing the FS_OPEN) to control its cache so that
future accesses see consistent data. The request parameter area contains the following
structure, and the request data area, reply data area, and reply parameter area are empty.
The client should respond immediately to this RPC and perform the cache consistency
actions in the background. The client issues a FS_CONSIST_REPLY RPC to the server
when it has completed the requested actions. This is a crude way of doing parallel RPCs
to many clients. The server sets up a short timeout (about 1 minute) for the client to
complete its actions, and it will let an open complete anyway if this timeout expires and a
rogue client has not responded to a consistency request.

typedef struct ConsistMsg {
Fs_FileID fileID;
int flags;
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int openTimeStamp;
int version;

} ConsistMsg;

The fileID identifies the file, and it is the same as the ioFileID returned from the FS_OPEN
RPC. The flags are explained below, and they indicate what action the client should take.
The openTimeStamp is the time stamp that the server thinks corresponds to the last open-
TimeStamp it returned to the client. The version should match with the last version
returned to the client in the Fsio_FileState. (It will eventually replace the openTimeS-
tamp altogether.) The point of the openTimeStamp is that if two clients open the same
file at the same time, then the reply to one client’s FS_OPEN may loose a race with a
FS_CONSIST RPC generated by the second client’s open. If a client receives a
FS_CONSIST RPC with an openTimeStamp ‘‘in the future’’ it drops the consistency
request and returns FAILURE (1). This forces the file server to retry the FS_CONSIST call,
giving the reply to the FS_OPEN a chance to arrive at the client. The consistency actions
are defined below.

0x01 FSCONSIST_WRITE_BACK_BLOCKS
The client should write back any dirty blocks that are lingering in its cache.

0x02 FSCONSIST_INVALIDATE_BLOCKS
The client should stop caching the file because it is now concurrently write shared
by different hosts. All future I/O operations on this file should bypass the client
cache and go through to the file server.

0x04 FSCONSIST_DELETE_FILE
This is issued as a side effect of a FS_REMOVE RPC if the client has dirty blocks for
the file. This is done even if it is the same client as the one currently making the
FS_REMOVE RPC.

0x08 FSCONSIST_CANT_CACHE_NAMED_PIPE
This is reserved for if we ever re-implement named pipes.

0x10 FSCONSIST_WRITE_BACK_ATTRS
The client should write-back its notion of the access and modify times of the file
that it is caching. This is generated as a side effect of FS_GET_ATTR and
FS_GET_ATTR_PATH RPCs by other clients. This is only done if the client is
actively using the file, and it is suppressed if the client only has the file open for
execution. The attributes are returned with the FS_CONSIST_REPLY RPC.

28. FS_CONSIST_REPLY This is issued by the client when it has completed the con-
sistency actions requested by the server. The request parameter area contains the follow-
ing structure.

typedef struct ConsistReply {
Fs_FileID fileID;
Fscache_Attributes cachedAttr;
ReturnStatus status;

} ConsistReply;

The fileID indicates the file that was acted on. The client always returns its notion of the
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attributes of the file because it updates these while caching the file. The status indicates
whether it could comply with the request. If the server’s disk is so full that a write-back
could not be made then this status is FS_DISK_FULL. The data is not lost, but it lingers in
the client’s cache until the write-back can succeed. However, this means that an open()
can fail with a disk full error!

29. FS_COPY_BLOCK This is used during fork() to copy a swap file on the file
server. This prevents the client from reading a swap file over the network just to copy it
and write it back. The request parameter area contains the folowing structure, and the
request data area, reply parameter area, and reply data area are empty.

typedef struct FsrmtBlockCopyParam {
Fs_FileID srcFileID;
Fs_FileID destFileID;
int blockNum;

} FsrmtBlockCopyParam;

The srcFileID and destFileID have been returned from FS_OPEN when the swap files were
opened. The blockNum specifies the FS_BLOCK_SIZE (4096 bytes) block to copy. This is
a logical block number because the client has no notion of where the swap files live on
disk.

30. FS_MIGRATE This is used during process migration to inform the I/O server that
an I/O stream has migrated to a new client. This is invoked from the destination client as
part of creating the process. The request parameter area contains the following structure.

typedef struct FsMigInfo {
Fs_FileID streamID;
Fs_FileID ioFileID;
Fs_FileID nameID;
Fs_FileID rootID;
int srcClientID;
int offset;
int flags;

} FsMigInfo;

This information is packaged up on the source client when the process migrates away.
The streamID, ioFileID, and nameID are those that have been returned from a previous
FS_OPEN. The rootID was specified in the FS_OPEN request that created the stream. The
srcClientID is the client were the process left. The offset is the offset at the time the pro-
cess left. (This is a bug, the offset should be returned from the source client as part of the
FS_RELEASE RPC.) The flags are the flags from the stream.

The reply parameter area of the FS_MIGRATE RPC contains the following structure.
The request and reply data areas are empty.

typedef struct FsrmtMigParam {
int dataSize;
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FsrmtUnionData data;
FsrmtMigrateReply migReply;

} FsrmtMigParam;

typedef struct FsrmtMigrateReply {
int flags;
int offset;

} FsrmtMigrateReply;

#define FS_RMT_SHARED 0x04000000

The I/O server returns the same FsrmtUnionData as it does in an FS_OPEN RPC, and the
client uses this to set up its I/O stream data structures. The I/O server also tells the client
the new stream offset to use, and it gives the client a new version of the stream flags. If
the flags in include the FS_RMT_SHARED bit then processes on different hosts are sharing
the stream. In this case the offset in the clients’ stream descriptors are not valid, and I/O
operations on the object have to go through to the I/O server. The I/O server keeps a sha-
dow stream descriptor that contains the valid stream offset in this case.

31. FS_RELEASE This is used by the I/O server during process migration to tell the
source of a migrated process that it can release an I/O stream that had been associated
with the process. Recall that fork() and dup() create extra references to a stream descrip-
tor, so this call is used to release that reference. This cannot be done safely at the time
the process leaves, so it is done as a side effect of the FS_MIGRATE RPC issued from the
destination client. At this time the current offset in the source client’s stream descriptor
is also returned to the I/O server, in case it needs to be cached there while the stream is
shared by processes on different hosts. The request parameter area contains the ID of the
stream that migrated, and the reply contains an inUse flag and the current offset. The
inUse flag should be set if their are still processes on the source client that reference the
stream descriptor.

typedef struct {
Fs_FileID streamID;

} FsStreamReleaseParam;

typedef struct {
Boolean inUse;
int offset;

} FsStreamReleaseReply;

32. FS_REOPEN This is used during the state recovery protocol to inform the I/O
server about I/O streams in use by a client. The request and reply parameter areas vary
depending on the object being reopened. The following structures are possible, although
note that every request structure contains a Fs_FileID as its first element. Also, the client
should map its FSIO_RMT stream types to the corresponding FSIO_LCL stream types before
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making the RPC.

typedef struct FsRmtDeviceReopenParams {
Fs_FileID fileID;
Fsutil_UseCounts use;

} FsRmtDeviceReopenParams;

typedef struct Fsutil_UseCounts {
int ref;
int write;
int exec;

} Fsutil_UseCounts;

The reopen parameters identify the object and specify how many streams the client has to
it. Note that the ref field in Fsutil_UseCounts is not the same as the number of reading
streams, but it is the total number of streams. This is a mistake and will be fixed eventu-
ally; it makes it impossible for a reader to reopen ‘‘/dev/syslog’’, which is a single
reader/multiple writer device. The request data area, the reply parameter area, and the
reply data area are empty in the case of device reopening.

typedef struct Fsio_PipeReopenParams {
Fs_FileID fileID;
Fsutil_UseCounts use;

} Fsio_PipeReopenParams;

A pipe may become remote due to process migration, therefore it may have to be reo-
pened if the client looses touch with the server. If the server can crashed then the reopen
will fail, but if there has only been a network partition the reopen may succeed. The
request data area, the reply parameter area, and the reply data area are empty in the case
of pipe reopening.

typedef struct Fsio_FileReopenParams {
Fs_FileID fileID;
Fs_FileID prefixFileID;
Fsutil_UseCounts use;
Boolean flags;
int version;

} Fsio_FileReopenParams;

#define FSIO_HAVE_BLOCKS 0x1
#define FS_SWAP 0x4000

The reopen parameters for a file specify the file and the prefix of the domain of the file.
This is needed to validate that the server still has the disk mounted. The
Fsutil_UseCounts are as described above. The flags include FSIO_HAVE_BLOCKS,
FS_SWAP, and FS_MAP to indicate if the client has dirty data blocks, is using the file for
VM backing store, or is mapping the file into its memory. The version number is the ver-
sion that the client has cached. The reply parameters when reopening a file are the
Fsio_FileState described above. The client should verify that the version number it has is
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correct, just as it does during an FS_OPEN.

typedef struct FspdevControlReopenParams {
Fs_FileID fileID;
int serverID;
int seed;

} FspdevControlReopenParams;

The file server that stores a pseudo-device file also keeps some state as to whether there
is currently a server process for the pseudo-device so it can prevent conflicts. If the file
server crashes this information has to be restored, and it is done by reopening the
pseudo-device control handle. The fileID in the reopen parameters is that returned from
FS_OPEN when the server process opened the pseudo-device with the FS_PDEV_MASTER
flag. The serverID is -1 if the server process has gone away since the file server crashed.
The seed is used by the file server to generate unique fileIDs for the connections to the
pseudo-device, and this needs to be restored, too. Under normal operation the file server
increments its seed everytime a new open is done on the pseudo-device, and it puts the
seed into the low-order 12 bits of the minor field in the ioFileID returned from FS_OPEN.
The I/O server knows about this, and it extracts the seed from the ioFileID so it can
restore it during recovery.

typedef struct StreamReopenParams {
Fs_FileID streamID;
Fs_FileID ioFileID;
int useFlags;
int offset;

} StreamReopenParams;

After all the other kinds of I/O handles have been reopened at a server, the client reopens
its stream descriptors that reference the I/O handles. The reopen specifies the streamID
and the ioFileID, so the I/O server can verify that its shadow stream descriptor connects
to the same I/O handle that the client thinks it should. The offset is used to recover the
offset in the server’s shadow stream descriptor. (This isn’t implemented. If the file
server crashes while a stream is shared by processes on different hosts, then the shared
offset is lost. This needs to be fixed, perhaps by adding an offset to the Fs_IOReply
structure so the client can cache the offset.)

33. FS_RECOVERY This is used after a client has completed its state recovery. This
is needed because the server drops regular FS_OPEN RPCs while a client is doing
FS_REOPEN RPCs. Specifically, after a server gets a FS_REOPEN from a client it drops an
FS_OPEN (from that client) until it recieves an FS_RECOVERY RPC. The FS_RECOVERY
RPC can also be used by a client to signal that it is begining the recovery protocol, but
this is not necessary. The parameter area of the request message contains a single integer
that contains a flag CLT_RECOV_IN_PROGRESS if the client is initiating recovery, and that
has no flag (zero value) when the client completes recovery.

#define CLT_RECOV_IN_PROGRESS 0x1
#define CLT_RECOV_COMPLETE 0x0
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34. FS_DOMAIN_INFO This is used to get information about a file system domain,
including the amount of disk space available. The request parameter area contains the
fileID associated with the prefix of the domain. This is returned from the FS_PREFIX
RPC. The reply parameter area contains a FsDomainInfoResults structure. The request
and reply data areas are empty.

typedef struct FsDomainInfoResults {
Fs_DomainInfo domain;
Fs_FileID fileID;

} FsDomainInfoResults;

typedef struct {
int maxKbytes;
int freeKbytes;
int maxFileDesc;
int freeFileDesc;
int blockSize;
int optSize;

} Fs_DomainInfo;

The fileID that is returned is the user-visible fileID that an application program would see
if it did a GET_ATTR_PATH on the prefix. With a pseudo-file-system this is different than
the internal fileID associated with the prefix, which identfies a request-response connec-
tion between the kernel and the server process. The Fs_DomainInfo indicates the max-
imum size of the file system, the number of free kilobytes, the maximum number of file
descriptors, the number of free descriptors, the native blocksize of the file system, and
the optimal transfer size of the file system.

35. PROC_MIG_COMMAND This is used to transfer process state between Sprite
hosts. The request parameter area contains a process ID and a command identifier. The
request data area contains command specific data. The reply parameter area contains a
return status, and optionally some command specific data. The migration commands are
described below, along with their command specific data.

typedef struct {
Proc_PID remotePid;
int command;

} ProcMigCmd;

0 PROC_MIGRATE_CMD_INIT
This is used to request permission to migrate to another host. The remotePid field
of the ProcMigCmd is NIL if the process is leaving its home node. During eviction,
when a process is migrating back home, the remotePid field is the home node pro-
cess ID. The request data area contains a ProcMigInitiateCmd structure, and the
reply parameter area contains the processID for the process on the remote host.

typedef struct {
int version;
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Proc_PID processID;
int userID;
int clientID;

} ProcMigInitiateCmd;

The version is a process migration implementation version number to ensure that
the two hosts are compatible. The processID is the ID of the process that wishes to
migrate. The userID is that of the owner of the process. The clientID is the Sprite
hostID of the host issuing the request.

1 PROC_MIGRATE_CMD_ENTIRE
This transfers the process control block. The request data area contains an encapsu-
lated control block. The exact format of the encapsulated control block is machine
specific and will not be described here. The reply data area is empty.

2 PROC_MIGRATE_CMD_UPDATE
This is used to update the state of a migrated process. The request data area con-
tains an UpdateEncapState structure, which contains the few fields of a Sprite pro-
cess control block that a process can modify.

typedef struct {
int familyID;
int userID;
int effectiveUserID;
int billingRate;

} UpdateEncapState;

3 PROC_MIGRATE_CMD_CALLBACK
Not used.

4 PROC_MIGRATE_CMD_DESTROY
This is called to kill a migrated process. The request and reply data areas are
empty.

5 PROC_MIGRATE_CMD_RESUME
This is called to continue execution of a suspended migrated process. The request
and reply data areas are empty.

6 PROC_MIGRATE_CMD_SUSPEND
This is called to suspend execution of a migrated process. The request and reply
data areas are empty.

36. PROC_REMOTE_CALL This is used to forward a system call from a migrated
process back to its home node. Most system calls are not fowarded, only a few that
depend on state maintained at the home node. The format of the request and reply are
implemnetation and system call specific, and are not described here.
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37. PROC_REMOTE_WAIT This is used when a migrated process waits for child
processes. Communication with the home node is required because synchronization with
process creation, process exit, and waiting is done there. The parameter area contains a
ProcRemoteWaitCmd structure, and the request data area contains an array of processIDs
on which to wait. The reply parameter area is empty and the reply data area contains a
ProcChildInfo structure. (Byte ordering isn’t an issue in the data area because process
migration only works between hosts of the same machine architecture.)

typedef struct {
Proc_PID pid;
int numPids;
Boolean flags;
int token;

} ProcRemoteWaitCmd;

typedef struct {
Proc_PID processID;
int termReason;
int termStatus;
int termCode;
int numQuantumEnds;
int numWaitEvents;
Timer_Ticks kernelCpuUsage;
Timer_Ticks userCpuUsage;
Timer_Ticks childKernelCpuUsage;
Timer_Ticks childUserCpuUsage;

} ProcChildInfo;

38. PROC_GETPCB This is used to return the process control block of a migrated
process for implementation of the ps (process status) application program. The request
parameter area contains an integer with value GET_PCB (0x1) or GET_SEG_INFO (0x2).
With GET_PCB the request data area contains the processID (also an integer). The reply
parameter area contains a Proc_PCBInfo structure, and the reply data area contains the
argument string of the process. The Proc_PCBInfo is described in
‘‘/sprite/lib/include/proc.h’’. With GET_SEG_INFO the request data area contains a virtual
memory segment number, and the reply parameter area contains a Vm_SegmentInfo
structure, which is described in ‘‘/sprite/lib/include/vm.h’’.

39. REMOTE_WAKEUP This is used to notify a remote process that some event has
occurred. The process has presumably registered itself via some blocking call such as
FS_READ or FS_WRITE, whose parameters include a Sync_RemoteWaiter structure. The
request parameter area of REMOTE_WAKEUP contains a Sync_RemoteWaiter structure,
and the request data area, reply parameter area, and reply data area are empty. Note that
this wakeup message can race with the process’s decision to wait at the other host. To
foil the race condition a process must be marked as in the process of deciding to wait. In
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the Sprite implementation, this is done by clearing a notify bit kept in the process’s con-
trol block. When a REMOTE_WAKEUP RPC is recieved by a Sprite host, the notify bit in
the process control block is set. Before actually blocking a process (in response to a
FS_WOULD_BLOCK return code) the Sprite kernel checks that the notify bit has not been
set asynchronously via this RPC. If the bit has been set, then the process is not blocked
and it retries its operation immediately. If this technique were not used then notifications
might get lost and hang the process.

40. SIG_SEND This is used to issue a signal to a remote process. The request parame-
ter are contains a SigParams structure. The request data area, reply parameter area, and
reply data area are empty.

typedef struct {
int sigNum;
int code;
Proc_PID id;
Boolean familyID;
int effUid;

} SigParms;

The sigNum is a Sprite signal, and the code field is used to modify this. The id is a pro-
cess identifier if the familyID field is zero, otherwise id is a process group identifier. The
effUid is the effective user ID of the signaling process, and this is used to verify permis-
sions.

41. Bugs and Ommisions

This specification is based on the Sprite implementation as of Fall 1989. There are
a couple of known bugs in it, and it is a bit crufty. However, there is a lot of inertia
behind the network interface because changing it requires coordinated changes on all
Sprite hosts. Future changes to the interface will ideally be backward compatible with
this interface by introducing new RPCs that fix certain bugs, while retaining the original
for compatibility with hosts running older versions of Sprite. The known bugs in the
interface are summarized below.

41.1. FS_REMOTE_LINK vs. FS_SYMBOLIC_LINK The Fs_ReadLink (or UNIX
readlink) system call is implemented as an FS_OPEN followed by an FS_READ. The type
field in the Fs_OpenArgs is specified as FS_REMOTE_LINK in the current implementation,
but the server should also allow regular symbolic links to be opened.

41.2. Device Attributes Currently, while the I/O server maintains the access and
modify times for a device while it is opened, this information is not pushed back to the
file server when the device is closed.
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41.3. Pathname Redirection There is some cruft in the way pathnames are returned
from the server. In some RPCs there is an extra 4 bytes in the data area that preceeds the
pathname, but in the Attributes RPCs the padding is gone. This is a hold-over from pre-
byteswapping days when the 4 bytes in the data area contained the prefix length. Simi-
larly, with the FS_RENAME and FS_LINK, there are 8 bytes of junk before the returned
pathname.

41.4. FS_SERVER_WRITE_THRU This flag is currently private to the client side of
the implementation. It could be passed through to the server to force a write-through to
disk. Currently, however, the client and server writing policies are completely indepen-
dent. Ordinarily clients uses a 30 second delay, and servers use write-back-ASAP. This
means that a file ages in the client’cache for 30 seconds, and then gets scheduled for a
disk write-back after the last block arrives from the client. Note that a client can use
fsync(), in which case the blocks are forced through to the servers disk, and fsync()
doesn’t return until after that has happened.
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